Skip to main content

Advertisement

Log in

Fluvastatin enhancement of trastuzumab and classical cytotoxic agents in defined breast cancer cell lines in vitro

  • Original Paper
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The combination of anticancer drugs used in the clinic has been based upon empiricism, and the potential permutations of currently available drugs overwhelm the clinical trials system. Recently, investigators have suggested that the combination of a blockade of vital signal transduction pathways in combination with more standard therapy might enhance anticancer effect. Using a panel of breast cancer cell lines and isobologram median effect analysis, a method of determining synergism or antagonism of drugs, we have investigated in vitro potentially clinically useful combinations of agents with the human cell lines MCF7/wt, MCF7/adr, BT474, and SK-BR-3 grown in log phase. Results were confirmed by curve shift analysis. Cells were exposed to the agent(s) for 72 h and then analyzed for cytotoxicity using a MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyl-tetrazolium bromide) assay. Fluvastatin, an inhibitor of prenylation with excellent tolerability in man, was chosen to disrupt signal transduction pathways and thus potentially enhance the effect of more traditional anticancer agents. Anticancer agents tested were cytotoxics used in the treatment of breast cancer, trastuzumab, and rapamycin as an inhibitor of the AKT pathway. Fluvastatin combined with trastuzumab demonstrates global synergy of cytotoxic effect that is confirmed by apoptosis assay. These effects could only be partially reversed by adding farnesol or geranylgeraniol to restore prenylation. Epirubicin is also synergistic with fluvastatin in three of the four cell lines. Rapamycin, an inhibitor of MTOR, was synergistic with fluvastatin in two of the four cell lines and antagonistic in two other cell lines. The combination of fluvastatin or another inhibitor of prenylation and trastuzumab may be attractive for clinical development as the effect of trastuzumab in Her2/neu positive breast tumors is incomplete as a single agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Adjei AA (2001) Blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 93:1062–1074

    Article  PubMed  CAS  Google Scholar 

  2. Elsayed YA, Sausville EA (2001) Selected novel anticancer treatments targeting cell signaling proteins. Oncologist 6:517–537

    Article  PubMed  CAS  Google Scholar 

  3. Pegram MD, Konecny GE, O’Callaghan C et al (2004) Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 96:739–749

    PubMed  CAS  Google Scholar 

  4. Blay JY, Le Cesne A, Alberti L et al (2005) Targeted cancer therapies. Bull Cancer 92:E13–18

    Article  PubMed  CAS  Google Scholar 

  5. Gelb MH, Scholten JD, Sebolt-Leopold JS (1998) Protein prenylation: from discovery to prospects for cancer treatment. Curr Opin Chem Biol 2:40–48

    Article  PubMed  CAS  Google Scholar 

  6. Russo P, Loprevite M, Cesario A et al (2004) Farnesylated proteins as anticancer drug targets: from laboratory to the clinic. Curr Med Chem Anti-Canc Agents 4:123–38

    Article  CAS  Google Scholar 

  7. Graaf MR, Richel DJ, van Noorden CJ et al (2004) Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev 30:609–641

    Article  PubMed  CAS  Google Scholar 

  8. Bouterfa HL, Sattelmeyer V, Czub S et al (2000) Inhibition of Ras farnesylation by lovastatin leads to downregulation of proliferation and migration in primary cultured human glioblastoma cells. Anticancer Res 20:2761–2771

    PubMed  CAS  Google Scholar 

  9. Cave WT Jr (1994) Isoprenoids and neoplastic growth. World Rev Nutr Diet 76:70–73

    PubMed  CAS  Google Scholar 

  10. Bottorff M, Hansten P (2000) Long-term safety of hepatic hydroxymethyl glutaryl coenzyme A reductase inhibitors. Arch Intern Med 160:2273–2280

    Article  PubMed  CAS  Google Scholar 

  11. Mason RP, Walter MF, Day CA et al (2005) Intermolecular differences of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitors contribute to distinct pharmacologic and pleiotropic actions. Am J Cardiol 96:11F-23F

    Article  PubMed  CAS  Google Scholar 

  12. Wong WW, Tan MM, Xia Z et al (2001) Cerivastatin triggers tumor-specific apoptosis with higher efficacy than lovastatin. Clin Cancer Res 7:2067–2075

    PubMed  CAS  Google Scholar 

  13. Staffa JA, Chang J, Green L (2002) Cerivastatin and reports of fatal rhabdomyolysis. N Engl J Med 346:539–540

    Article  PubMed  Google Scholar 

  14. Scripture CD, Pieper JA (2001) Clinical pharmacokinetics of fluvastatin. Clin Pharmacokinet 40:263–281

    Article  PubMed  CAS  Google Scholar 

  15. De Angelis G (2004) The influence of statin characteristics on their safety and tolerability. Int J Clin Pract 58:945–955

    Article  PubMed  CAS  Google Scholar 

  16. Muck AO, Seeger H, Wallwiener D (2004) Inhibitory effect of statins on the proliferation of human breast cancer cells. Int J Clin Pharmacol Ther 42:695–700

    PubMed  CAS  Google Scholar 

  17. Horiguchi A, Sumitomo M, Asakuma J et al (2004) 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitor, fluvastatin, as a novel agent for prophylaxis of renal cancer metastasis. Clin Cancer Res 10:8648–8655

    Article  PubMed  CAS  Google Scholar 

  18. Budman DR, Calabro A, Wang LG et al (2000) Synergism of cytotoxic effects of vinorelbine and paclitaxel in vitro. Cancer Invest 18:695–701

    PubMed  CAS  Google Scholar 

  19. Budman DR, Calabro A (2002) In vitro search for synergy and antagonism: evaluation of docetaxel combinations in breast cancer cell lines. Breast Cancer Res Treat 74:41–46

    Article  PubMed  CAS  Google Scholar 

  20. Vignot S, Faivre S, Aguirre D et al (2005) mTOR-targeted therapy of cancer with rapamycin derivatives. Ann Oncol 16:525–537

    Article  PubMed  CAS  Google Scholar 

  21. Boulay A, Rudloff J, Ye J et al (2005) Dual inhibition of mTOR and estrogen receptor signaling in vitro induces cell death in models of breast cancer. Clin Cancer Res 11:5319–5328

    Article  PubMed  CAS  Google Scholar 

  22. Konecny G, Pauletti G, Pegram M et al (2003) Quantitative association between HER-2/neu and steroid hormone receptors in hormone receptor-positive primary breast cancer. J Natl Cancer Inst 95:142–153

    PubMed  CAS  Google Scholar 

  23. deFazio A, Chiew YE, Sini RL et al (2000) Expression of c-erbB receptors, heregulin and oestrogen receptor in human breast cell lines. Int J Cancer 87:487–498

    Article  PubMed  CAS  Google Scholar 

  24. Lasfargues EY, Coutinho WG, Redfield ES (1978) Isolation of two human tumor epithelial cell lines from solid breast carcinomas. J Natl Cancer Inst 61:967–978

    PubMed  CAS  Google Scholar 

  25. Love-Schimenti CD, Gibson DF, Ratnam AV et al (1996) Antiestrogen potentiation of antiproliferative effects of vitamin D3 analogues in breast cancer cells. Cancer Res 56:2789–2794

    PubMed  CAS  Google Scholar 

  26. Cai Z, Capoulade C, Moyret-Lalle C et al (1997) Resistance of MCF7 human breast carcinoma cells to TNF-induced cell death is associated with loss of p53 function. Oncogene 15:2817–2826

    Article  PubMed  CAS  Google Scholar 

  27. Budman DR, Soong R, Calabro A et al (2006) Identification of potentially useful combinations of epidermal growth factor receptor tyrosine linase antagonists with conventional agents using median effect analysis. Anticancer Drugs 17:921–928

    Article  PubMed  CAS  Google Scholar 

  28. Budman DR, Calabro A (2004) Studies of synergistic and antagonistic combinations of conventional cytotoxic agents with the multiple eicosanoid pathway modulator LY 293111. Anticancer Drugs 15:877–881

    Article  PubMed  CAS  Google Scholar 

  29. Budman DR, Calabro A, Kreis W (2001) In vitro effects of dexrazoxane (Zinecard) and classical acute leukemia therapy: time to consider expanded clinical trials? Leukemia 15:1517–1520

    Article  PubMed  CAS  Google Scholar 

  30. Budman DR, Calabro A, Kreis W (1998) In vitro evaluation of synergism or antagonism with combinations of new cytotoxic agents. Anticancer Drugs 9:697–702

    Article  PubMed  CAS  Google Scholar 

  31. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to profileration and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  PubMed  CAS  Google Scholar 

  32. Kreis W, Budman DR, Calabro A (1997) Unique synergism or antagonism of combinations of chemotherapeutic and hormonal agents in human prostate cancer cell lines. Br J Urol 79:196–202

    PubMed  CAS  Google Scholar 

  33. Barilla D, Prasad P, Hubert M et al (2004) Steady-state pharmacokinetics of fluvastatin in healthy subjects following a new extended release fluvastatin tablet, Lescol XL. Biopharm Drug Dispos 25:51–59

    Article  PubMed  CAS  Google Scholar 

  34. Budman DR, Calabro A, Kreis W (2002) Synergistic and antagonistic combinations of drugs in human prostate cancer cell lines in vitro. Anticancer Drugs 13:1011–1016

    Article  PubMed  CAS  Google Scholar 

  35. Konecny GE, Pegram MD (2004) Gemcitabine in combination with trastuzumab and/or platinum salts in breast cancer cells with HER2 overexpression. Oncology (Huntingt) 18:32–36

    Article  Google Scholar 

  36. Kreis W, Budman DR, Calabro A (2001) A reexamination of PSC 833 (Valspodar) as a cytotoxic agent and in combination with anticancer agents. Cancer Chemother Pharmacol 47:78–82

    Article  PubMed  CAS  Google Scholar 

  37. Chou TC, Talalay P (1981) Generalized equations for the analysis of inhibitions of Michaelis-Menten and higher-order kinetic systems with two or more mutually exclusive and nonexclusive inhibitors. Eur J Biochem 115:207–216

    Article  PubMed  CAS  Google Scholar 

  38. Chou TC (1994) Assessment of synergistic and antagonistic effects of chemotherapeutic agents in vitro. Contrib Gynecol Obstet 19:91–107

    PubMed  CAS  Google Scholar 

  39. Chou TC (1998) Drug combinations: from laboratory to practice. J Lab Clin Med 132:6–8

    Article  PubMed  CAS  Google Scholar 

  40. Zhao L, Wientjes MG, Au JL (2004) Evaluation of combination chemotherapy: integration of nonlinear regression, curve shift, isobologram, and combination index analyses. Clin Cancer Res 10:7994–8004

    Article  PubMed  CAS  Google Scholar 

  41. Liu X, Yue P, Zhou Z et al (2004) Death receptor regulation and celecoxib-induced apoptosis in human lung cancer cells. J Natl Cancer Inst 96:1769–1780

    Article  PubMed  CAS  Google Scholar 

  42. Seidman A (2003) Introduction. Single-agent or combination chemotherapy in metastatic breast cancer. Oncology (Huntingt) 17:9–14

    Google Scholar 

  43. Voskoglou-Nomikos T, Baral S, Seymour L (2003) The role of in vitro cell line, human xenograft, and mouse allograft models in cancer drug development. In: Budman D et al (Eds) Handbook of anticancer drug development. Lippincott, Williams & Wilkins, Baltimore, pp 129–148

    Google Scholar 

  44. Gessner PK (1995) Isobolographic analysis of interactions: an update on applications and utility. Toxicology 105:161–179

    Article  PubMed  CAS  Google Scholar 

  45. Grabovsky Y, Tallarida RJ (2004) Isobolographic analysis for combinations of a full and partial agonist: curved isoboles. J Pharmacol Exp Ther 310:981–986

    Article  PubMed  CAS  Google Scholar 

  46. Tallarida RJ (2001) Drug synergism: its detection and applications. J Pharmacol Exp Ther 298:865–872

    PubMed  CAS  Google Scholar 

  47. Chakrabarti D, Azam T, DelVecchio C et al (1998) Protein prenyl transferase activities of Plasmodium falciparum. Mol Biochem Parasitol 94:175–184

    Article  PubMed  CAS  Google Scholar 

  48. Chou TC (2002) Synergy determination issues. J Virol 76:10577 author reply 10578

    Article  PubMed  CAS  Google Scholar 

  49. Greco WR, Bravo G, Parsons JC (1995) The search for synergy: a critical review from a response surface perspective. Pharmacol Rev 47:331–385

    PubMed  CAS  Google Scholar 

  50. Sachs K, Perez O, Pe’er D et al (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529

    Article  PubMed  CAS  Google Scholar 

  51. Cohen LH, Pieterman E, van Leeuwen RE et al (2000) Inhibitors of prenylation of Ras and other G-proteins and their application as therapeutics. Biochem Pharmacol 60:1061–1068

    Article  PubMed  CAS  Google Scholar 

  52. Stamm J, Ornstein D (2005) The role of statins in cancer prevention and treatment. Oncology 19:739–750

    PubMed  Google Scholar 

  53. Ayral-Kaloustian S, Salaski EJ (2002) Protein farnesyltransferase inhibitors. Curr Med Chem 9:1003–1032

    Article  PubMed  CAS  Google Scholar 

  54. Blume E (1993) Drug designers target Ras for cancer treatment. J Natl Cancer Inst 85:1542–1544

    Article  PubMed  CAS  Google Scholar 

  55. Bredel M, Pollack IF, Freund JM et al (1998) Inhibition of Ras and related G-proteins as a therapeutic strategy for blocking malignant glioma growth. Neurosurgery 43:124–131; discussion 131–132

    Google Scholar 

  56. Canevari S, Biocca S, Figini M (2002) Re: blocking oncogenic Ras signaling for cancer therapy. J Natl Cancer Inst 94:1031–1032 (author reply 1032)

    PubMed  Google Scholar 

  57. Collisson EA, Carranza DC, Chen IY et al (2002) Isoprenylation is necessary for the full invasive potential of RhoA overexpression in human melanoma cells. J Invest Dermatol 119:1172–1176

    Article  PubMed  CAS  Google Scholar 

  58. Cortes J (2003) Farnesyltransferase inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Clin Lymphoma 1(4 Suppl):S30–S35

    Article  Google Scholar 

  59. Crick DC, Andres DA, Danesi R et al (1998) Geranylgeraniol overcomes the block of cell proliferation by lovastatin in C6 glioma cells. J Neurochem 70:2397–2405

    Article  PubMed  CAS  Google Scholar 

  60. Di Paolo A, Danesi R, Caputo S et al (2001) Inhibition of protein farnesylation enhances the chemotherapeutic efficacy of the novel geranylgeranyltransferase inhibitor BAL9611 in human colon cancer cells. Br J Cancer 84:1535–1543

    Article  PubMed  CAS  Google Scholar 

  61. Dimster-Denk D, Schafer WR, Rine J (1995) Control of RAS mRNA level by the mevalonate pathway. Mol Biol Cell 6:59–70

    PubMed  CAS  Google Scholar 

  62. Furst J, Haller T, Chwatal S et al (2002) Simvastatin inhibits malignant transformation following expression of the Ha-ras oncogene in NIH 3T3 fibroblasts. Cell Physiol Biochem 12:19–30

    Article  PubMed  Google Scholar 

  63. Jones KD, Couldwell WT, Hinton DR et al (1994) Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun 205:1681–1687

    Article  PubMed  CAS  Google Scholar 

  64. Khosravi-Far R, Cox AD, Kato K et al (1992) Protein prenylation: key to ras function and cancer intervention? Cell Growth Differ 3:461–469

    PubMed  CAS  Google Scholar 

  65. Kusama T, Mukai M, Tatsuta M et al (2003) Selective inhibition of cancer cell invasion by a geranylgeranyltransferase-I inhibitor. Clin Exp Metastasis 20:561–567

    Article  PubMed  CAS  Google Scholar 

  66. Li HY, Appelbaum FR, Willman CL et al (2003) Cholesterol-modulating agents kill acute myeloid leukemia cells and sensitize them to therapeutics by blocking adaptive cholesterol responses. Blood 101:3628–3634

    Article  PubMed  CAS  Google Scholar 

  67. Morgan MA, Ganser A, Reuter CW (2003) Therapeutic efficacy of prenylation inhibitors in the treatment of myeloid leukemia. Leukemia 17:1482–1498

    Article  PubMed  CAS  Google Scholar 

  68. Osman H, Mazet JL, Maume G et al (1997) Geranylgeranyl as well as farnesyl moiety is transferred to Ras p21 overproduced in adrenocortical cells transformed by c-Ha-rasEJ oncogene. Biochem Biophys Res Commun 231:789–792

    Article  PubMed  CAS  Google Scholar 

  69. Rubins JB, Greatens T, Kratzke RA et al (1998) Lovastatin induces apoptosis in malignant mesothelioma cells. Am J Respir Crit Care Med 157:1616–1622

    PubMed  CAS  Google Scholar 

  70. Wang CY, Zhong WB, Chang TC et al (2003) Lovastatin, a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor, induces apoptosis and differentiation in human anaplastic thyroid carcinoma cells. J Clin Endocrinol Metab 88:3021–3026

    Article  PubMed  CAS  Google Scholar 

  71. Zhong WB, Wang CY, Chang TC et al (2003) Lovastatin induces apoptosis of anaplastic thyroid cancer cells via inhibition of protein geranylgeranylation and de novo protein synthesis. Endocrinology 144:3852–3859

    Article  PubMed  CAS  Google Scholar 

  72. Vogt A, Sun J, Qian Y et al (1997) The geranylgeranyltransferase-I inhibitor GGTI-298 arrests human tumor cells in G0/G1 and induces p21(WAF1/CIP1/SDI1) in a p53-independent manner. J Biol Chem 272:27224–27229

    Article  PubMed  CAS  Google Scholar 

  73. Xia Z, Tan MM, Wong WW et al (2001) Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15:1398–1407

    Article  PubMed  CAS  Google Scholar 

  74. van de Donk NW, Kamphuis MM, van Kessel B et al (2003) Inhibition of protein geranylgeranylation induces apoptosis in myeloma plasma cells by reducing Mcl-1 protein levels. Blood 102:3354–3362

    Article  PubMed  CAS  Google Scholar 

  75. Siddals KW, Marshman E, Westwood M et al (2004) Abrogation of insulin-like growth factor-I (IGF-I) and insulin action by mevalonic acid depletion: synergy between protein prenylation and receptor glycosylation pathways. J Biol Chem 279:38353–38359

    Article  PubMed  CAS  Google Scholar 

  76. Wang E, Casciano CN, Clement RP et al (2001) HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res 18:800–806

    Article  PubMed  CAS  Google Scholar 

  77. Cordle A, Koenigsknecht-Talboo J, Wilkinson B et al (2005) Mechanisms of statin-mediated inhibition of small G-protein function. J Biol Chem 280:34202–34209

    Article  PubMed  CAS  Google Scholar 

  78. Werner M, Sacher J, Hohenegger M (2004) Mutual amplification of apoptosis by statin-induced mitochondrial stress and doxorubicin toxicity in human rhabdomyosarcoma cells. Br J Pharmacol 143:715–724

    Article  PubMed  CAS  Google Scholar 

  79. Teresi RE, Shaiu CW, Chen CS et al (2006) Increased PTEN expression due to transcriptional activation of PPARgamma by Lovastatin and Rosiglitazone. Int J Cancer 118:2390–2398

    Article  PubMed  CAS  Google Scholar 

  80. Fujita T, Doihara H, Kawasaki K et al (2006) PTEN activity could be a predictive marker of trastuzumab efficacy in the treatment of ErbB2-overexpressing breast cancer. Br J Cancer 94:247–252

    Article  PubMed  CAS  Google Scholar 

  81. Bonovas S, Filioussi K, Tsavaris N et al (2005) Use of statins and breast cancer: a meta-analysis of seven randomized clinical trials and nine observational studies. J Clin Oncol 23:8606–8612

    Article  PubMed  Google Scholar 

  82. deSolms SJ, Ciccarone TM, MacTough SC et al (2003) Dual protein farnesyltransferase-geranylgeranyltransferase-I inhibitors as potential cancer chemotherapeutic agents. J Med Chem 46:2973–2984

    Article  PubMed  CAS  Google Scholar 

  83. Piccart-Gebhart MJ, Procter M, Leyland-Jones B et al (2005) Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med 353:1659–1672

    Article  PubMed  CAS  Google Scholar 

  84. Wakeling AE (2005) Inhibitors of growth factor signalling. Endocr Relat Cancer 1(12 Suppl):S183–187

    Article  CAS  Google Scholar 

  85. Feleszko W, Mlynarczuk I, Olszewska D et al. (2002) Lovastatin potentiates antitumor activity of doxorubicin in murine melanoma via an apoptosis-dependent mechanism. Int J Cancer 100:111–8

    Article  PubMed  CAS  Google Scholar 

  86. Holstein SA, Hohl RJ (2001) Synergistic interaction of lovastatin and paclitaxel in human cancer cells. Mol Cancer Ther 1:141–9

    PubMed  CAS  Google Scholar 

  87. Muller-Tidow C, Kiehl M, Sindermann JR et al (2003) Synergistic growth inhibitory effects of interferon-alpha and lovastatin on bcr-abl positive leukemic cells. Int J Oncol 23:151–158

    PubMed  Google Scholar 

  88. Jones RL, Smith IE (2004) Efficacy and safety of trastuzumab. Expert Opin Drug Saf 3:317–327

    Article  PubMed  Google Scholar 

  89. Gasparini G, Longo R, Torino F et al (2005) Therapy of breast cancer with molecular targeting agents. Ann Oncol 4(16 Suppl):iv28–iv36

    Article  Google Scholar 

  90. Tack DK, Palmieri FM, Perez EA (2004) Anthracycline vs nonanthracycline adjuvant therapy for breast cancer. Oncology (Huntingt) 18:1367–1376 (discussion 1378, 1381)

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. Merrill Egorin (University of Pittsburgh) for his intellectual support of this study. Supported in part by NCI CA-88104-02, NCI CA-35279, and a grant from the Don Monti Foundation. Presented in part at the San Antonio Breast Cancer Symposium 2005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel R. Budman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budman, D.R., Tai, J. & Calabro, A. Fluvastatin enhancement of trastuzumab and classical cytotoxic agents in defined breast cancer cell lines in vitro. Breast Cancer Res Treat 104, 93–101 (2007). https://doi.org/10.1007/s10549-006-9395-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-006-9395-5

Keywords

Navigation