Skip to main content

Advertisement

Log in

Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth

Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Tamoxifen resistance is a major clinical challenge in breast cancer treatment. Aromatase inhibitors are effective in women who progressed or recurred on tamoxifen, suggesting a role of local estrogen production by aromatase in driving tamoxifen-resistant phenotype. However, the link between aromatase activity and tamoxifen resistance has not yet been reported. We investigated whether long-term tamoxifen exposure may affect aromatase activity and/or expression, which may then sustain tamoxifen-resistant breast cancer cell growth. We employed MCF-7 breast cancer cells, tamoxifen-resistant MCF-7 cells (MCF-7 TR1 and TR2), SKBR-3 breast cancer cells, cancer-associated fibroblasts (CAFs1 and CAFs2). We used tritiated-water release assay, realtime-RT-PCR, and immunoblotting analysis for evaluating aromatase activity and expression; anchorage-independent assays for growth; reporter-gene, electrophoretic-mobility-shift, and chromatin-immunoprecipitation assays for promoter activity studies. We demonstrated an increased aromatase activity and expression, which supports proliferation in tamoxifen-resistant breast cancer cells. This is mediated by the G-protein-coupled receptor GPR30/GPER, since knocking-down GPER expression or treatment with a GPER antagonist reversed the enhanced aromatase levels induced by long-term tamoxifen exposure. The molecular mechanism was investigated in ER-negative, GPER/aromatase-positive SKBR3 cells, in which tamoxifen acts as a GPER agonist. Tamoxifen treatment increased aromatase promoter activity through an enhanced recruitment of c-fos/c-jun complex to AP-1 responsive elements located within the promoter region. As tamoxifen via GPER induced aromatase expression also in CAFs, this pathway may be involved in promoting aggressive behavior of breast tumors in response to tamoxifen treatment. Blocking estrogen production and/or GPER signaling activation may represent a valid option to overcome tamoxifen-resistance in breast cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Harada N (1997) Aberrant expression of aromatase in breast cancer tissues. J Steroid Biochem Mol Biol 61:175–184

    Article  CAS  PubMed  Google Scholar 

  2. James VH, McNeill JM, Lai LC et al (1987) Aromatase activity in normal breast and breast tumor tissues: in vivo and in vitro studies. Steroids 50:269–279

    Article  CAS  PubMed  Google Scholar 

  3. Esteban JM, Warsi Z, Haniu M et al (1992) Detection of intratumoral aromatase in breast carcinomas. An immunohistochemical study with clinicopathologic correlation. Am J Pathol 140:337–343

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Chen S, Masri S, Wang X et al (2006) What do we know about the mechanisms of aromatase inhibitor resistance? J Steroid Biochem Mol Biol 102:232–240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Simpson ER, Michael MD, Agarwal VR et al (1997) Cytochromes P450 11: expression of the CYP19 (aromatase) gene: an unusual case of alternative promoter usage. FASEB J 11:29–36

    CAS  PubMed  Google Scholar 

  6. Bulun SE, Sebastian S, Takayama K et al (2003) The human CYP19 (aromatase P450) gene: update on physiologic roles and genomic organization of promoters. J Steroid Biochem Mol Biol 86:219–224

    Article  CAS  PubMed  Google Scholar 

  7. Barone I, Giordano C, Malivindi R et al (2012) Estrogens and PTP1B function in a novel pathway to regulate aromatase enzymatic activity in breast cancer cells. Endocrinology 153:5157–5166

    Article  CAS  PubMed  Google Scholar 

  8. Catalano S, Barone I, Giordano C et al (2009) Rapid estradiol/ERalpha signaling enhances aromatase enzymatic activity in breast cancer cells. Mol Endocrinol 23:1634–1645

    Article  CAS  PubMed  Google Scholar 

  9. Maggiolini M, Carpino A, Bonofiglio D et al (2001) The direct proliferative stimulus of dehydroepiandrosterone on MCF7 breast cancer cells is potentiated by overexpression of aromatase. Mol Cell Endocrinol 184:163–171

    Article  CAS  PubMed  Google Scholar 

  10. Sun XZ, Zhou D, Chen S (1997) Autocrine and paracrine actions of breast tumor aromatase. A three-dimensional cell culture study involving aromatase transfected MCF-7 and T-47D cells. J Steroid Biochem Mol Biol 63:29–36

    Article  CAS  PubMed  Google Scholar 

  11. Yue W, Zhou D, Chen S et al (1994) A new nude mouse model for postmenopausal breast cancer using MCF-7 cells transfected with the human aromatase gene. Cancer Res 54:5092–5095

    CAS  PubMed  Google Scholar 

  12. Tekmal RR, Ramachandra N, Gubba S et al (1996) Overexpression of int-5/aromatase in mammary glands of transgenic mice results in the induction of hyperplasia and nuclear abnormalities. Cancer Res 56:3180–3185

    CAS  PubMed  Google Scholar 

  13. Prossnitz ER, Maggiolini M (2009) Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol 308:32–38

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Revankar CM, Cimino DF, Sklar LA et al (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630

    Article  CAS  PubMed  Google Scholar 

  15. Filardo EJ (2002) Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol 80:231–238

    Article  CAS  PubMed  Google Scholar 

  16. Prossnitz ER, Oprea TI, Sklar LA et al (2008) The ins and outs of GPR30: a transmembrane estrogen receptor. J Steroid Biochem Mol Biol 109:350–353

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Filardo EJ, Quinn JA, Bland KI et al (2000) Estrogen-induced activation of Erk-1 and Erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol 14:1649–1660

    Article  CAS  PubMed  Google Scholar 

  18. Pandey DP, Lappano R, Albanito L et al (2009) Estrogenic GPR30 signalling induces proliferation and migration of breast cancer cells through CTGF. EMBO J 28:523–532

    Article  PubMed Central  PubMed  Google Scholar 

  19. Thomas P, Pang Y, Filardo EJ et al (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624–632

    Article  CAS  PubMed  Google Scholar 

  20. Vivacqua A, Bonofiglio D, Recchia AG et al (2006) The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17beta-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol 20:631–646

    Article  CAS  PubMed  Google Scholar 

  21. Vivacqua A, Bonofiglio D, Albanito L et al (2006) 17beta-estradiol, genistein, and 4-hydroxytamoxifen induce the proliferation of thyroid cancer cells through the g protein-coupled receptor GPR30. Mol Pharmacol 70:1414–1423

    Article  CAS  PubMed  Google Scholar 

  22. Encarnacion CA, Ciocca DR, McGuire WL et al (1993) Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 26:237–246

    Article  CAS  PubMed  Google Scholar 

  23. Giordano C, Cui Y, Barone I et al (2009) Growth factor-induced resistance to tamoxifen is associated with a mutation of estrogen receptor alpha and its phosphorylation at serine 305. Breast Cancer Res Treat 119:71–85

    Article  PubMed  Google Scholar 

  24. Barone I, Brusco L, Fuqua SA (2010) Estrogen receptor mutations and changes in downstream gene expression and signaling. Clin Cancer Res 16:2702–2708

    Article  CAS  PubMed  Google Scholar 

  25. Barone I, Iacopetta D, Covington KR et al (2010) Phosphorylation of the mutant K303R estrogen receptor alpha at serine 305 affects aromatase inhibitor sensitivity. Oncogene 29:2404–2414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Barone I, Cui Y, Herynk MH et al (2009) Expression of the K303R estrogen receptor-alpha breast cancer mutation induces resistance to an aromatase inhibitor via addiction to the PI3K/Akt kinase pathway. Cancer Res 69:4724–4732

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365

    Article  CAS  PubMed  Google Scholar 

  28. Martin LA, Farmer I, Johnston SR et al (2003) Enhanced estrogen receptor (ER) alpha, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. J Biol Chem 278:30458–30468

    Article  CAS  PubMed  Google Scholar 

  29. Schiff R, Massarweh SA, Shou J et al (2004) Cross-talk between estrogen receptor and growth factor pathways as a molecular target for overcoming endocrine resistance. Clin Cancer Res 10:331S–336S

    Article  CAS  PubMed  Google Scholar 

  30. Sabnis GJ, Jelovac D, Long B et al (2005) The role of growth factor receptor pathways in human breast cancer cells adapted to long-term estrogen deprivation. Cancer Res 65:3903–3910

    Article  CAS  PubMed  Google Scholar 

  31. Staka CM, Nicholson RI, Gee JM (2005) Acquired resistance to oestrogen deprivation: role for growth factor signalling kinases/oestrogen receptor cross-talk revealed in new MCF-7X model. Endocr Relat Cancer 12(Suppl 1):S85–S97

    Article  CAS  PubMed  Google Scholar 

  32. Evan GI, Brown L, Whyte M et al (1995) Apoptosis and the cell cycle. Curr Opin Cell Biol 7:825–834

    Article  CAS  PubMed  Google Scholar 

  33. Ignatov A, Ignatov T, Roessner A et al (2010) Role of GPR30 in the mechanisms of tamoxifen resistance in breast cancer MCF-7 cells. Breast Cancer Res Treat 123:87–96

    Article  CAS  PubMed  Google Scholar 

  34. Ignatov A, Ignatov T, Weissenborn C et al (2011) G-protein-coupled estrogen receptor GPR30 and tamoxifen resistance in breast cancer. Breast Cancer Res Treat 128:457–466

    Article  CAS  PubMed  Google Scholar 

  35. Vivacqua A, Lappano R, De Marco P et al (2009) G protein-coupled receptor 30 expression is up-regulated by EGF and TGF alpha in estrogen receptor alpha-positive cancer cells. Mol Endocrinol 23:1815–1826

    Article  CAS  PubMed  Google Scholar 

  36. Lin BC, Suzawa M, Blind RD et al (2009) Stimulating the GPR30 estrogen receptor with a novel tamoxifen analogue activates SF-1 and promotes endometrial cell proliferation. Cancer Res 69:5415–5423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Barone I, Brusco L, Gu G et al (2011) Loss of Rho GDIalpha and resistance to tamoxifen via effects on estrogen receptor alpha. J Natl Cancer Inst 103:538–552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Barone I, Catalano S, Gelsomino L et al (2012) Leptin mediates tumor-stromal interactions that promote the invasive growth of breast cancer cells. Cancer Res 72:1416–1427

    Article  CAS  PubMed  Google Scholar 

  39. Catalano S, Marsico S, Giordano C et al (2003) Leptin enhances, via AP-1, expression of aromatase in the MCF-7 cell line. J Biol Chem 278:28668–28676

    Article  CAS  PubMed  Google Scholar 

  40. Albanito L, Sisci D, Aquila S et al (2008) Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology 149:3799–3808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Catalano S, Malivindi R, Giordano C et al (2010) Farnesoid X receptor, through the binding with steroidogenic factor 1-responsive element, inhibits aromatase expression in tumor Leydig cells. J Biol Chem 285:5581–5593

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Plastina P, Bonofiglio D, Vizza D et al (2012) Identification of bioactive constituents of Ziziphus jujube fruit extracts exerting antiproliferative and apoptotic effects in human breast cancer cells. J Ethnopharmacol 140:325–332

    Article  CAS  PubMed  Google Scholar 

  43. Catalano S, Panza S, Malivindi R et al (2013) Inhibition of Leydig tumor growth by farnesoid X receptor activation: the in vitro and in vivo basis for a novel therapeutic strategy. Int J Cancer 132:2237–2247

    Article  CAS  PubMed  Google Scholar 

  44. Andrews NC, Faller DV (1991) A rapid micropreparation technique for extraction of DNA-binding proteins from limiting numbers of mammalian cells. Nucleic Acids Res 19:2499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Gu G, Barone I, Gelsomino L et al (2012) Oldenlandia diffusa extracts exert antiproliferative and apoptotic effects on human breast cancer cells through ERalpha/Sp1-mediated p53 activation. J Cell Physiol 227:3363–3372

    Article  CAS  PubMed  Google Scholar 

  46. Giordano C, Catalano S, Panza S et al (2011) Farnesoid X receptor inhibits tamoxifen-resistant MCF-7 breast cancer cell growth through downregulation of HER2 expression. Oncogene 30:4129–4140

    Article  CAS  PubMed  Google Scholar 

  47. Macedo LF, Guo Z, Tilghman SL et al (2006) Role of androgens on MCF-7 breast cancer cell growth and on the inhibitory effect of letrozole. Cancer Res 66:7775–7782

    Article  CAS  PubMed  Google Scholar 

  48. Lanzino M, Maris P, Sirianni R et al (2013) DAX-1, as an androgen-target gene, inhibits aromatase expression: a novel mechanism blocking estrogen-dependent breast cancer cell proliferation. Cell Death Dis 4:e724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Maggiolini M, Vivacqua A, Fasanella G et al (2004) The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17beta-estradiol and phytoestrogens in breast cancer cells. J Biol Chem 279:27008–27016

    Article  CAS  PubMed  Google Scholar 

  50. Carmeci C, Thompson DA, Ring HZ et al (1997) Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 45:607–617

    Article  CAS  PubMed  Google Scholar 

  51. Vivacqua A, Romeo E, De Marco P et al (2012) GPER mediates the Egr-1 expression induced by 17beta-estradiol and 4-hydroxitamoxifen in breast and endometrial cancer cells. Breast Cancer Res Treat 133:1025–1035

    Article  CAS  PubMed  Google Scholar 

  52. Albanito L, Madeo A, Lappano R et al (2007) G protein-coupled receptor 30 (GPR30) mediates gene expression changes and growth response to 17beta-estradiol and selective GPR30 ligand G-1 in ovarian cancer cells. Cancer Res 67:1859–1866

    Article  CAS  PubMed  Google Scholar 

  53. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    Article  CAS  PubMed  Google Scholar 

  54. Albanito L, Lappano R, Madeo A et al (2008) G-protein-coupled receptor 30 and estrogen receptor-alpha are involved in the proliferative effects induced by atrazine in ovarian cancer cells. Environ Health Perspect 116:1648–1655

    Article  CAS  PubMed  Google Scholar 

  55. Filardo EJ, Graeber CT, Quinn JA et al (2006) Distribution of GPR30, a seven membrane-spanning estrogen receptor, in primary breast cancer and its association with clinicopathologic determinants of tumor progression. Clin Cancer Res 12:6359–6366

    Article  CAS  PubMed  Google Scholar 

  56. Sirianni R, Chimento A, Ruggiero C et al (2008) The novel estrogen receptor, G protein-coupled receptor 30, mediates the proliferative effects induced by 17beta-estradiol on mouse spermatogonial GC-1 cell line. Endocrinology 149:5043–5051

    Article  CAS  PubMed  Google Scholar 

  57. Kuo WH, Chang LY, Liu DL et al (2007) The interactions between GPR30 and the major biomarkers in infiltrating ductal carcinoma of the breast in an Asian population. Taiwan J Obstet Gynecol 46:135–145

    Article  PubMed  Google Scholar 

  58. Angel P, Karin M (1991) The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta 1072:129–157

    CAS  PubMed  Google Scholar 

  59. Morgan L, Gee J, Pumford S et al (2009) Elevated Src kinase activity attenuates tamoxifen response in vitro and is associated with poor prognosis clinically. Cancer Biol Ther 8:1550–1558

    Article  CAS  PubMed  Google Scholar 

  60. Fan P, Wang J, Santen RJ et al (2007) Long-term treatment with tamoxifen facilitates translocation of estrogen receptor alpha out of the nucleus and enhances its interaction with EGFR in MCF-7 breast cancer cells. Cancer Res 67:1352–1360

    Article  CAS  PubMed  Google Scholar 

  61. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  CAS  PubMed  Google Scholar 

  62. Witz IP (2008) Yin-Yang activities and vicious cycles in the tumor microenvironment. Cancer Res 68:9–13

    Article  CAS  PubMed  Google Scholar 

  63. Martinez-Outschoorn UE, Goldberg A, Lin Z et al (2011) Anti-estrogen resistance in breast cancer is induced by the tumor microenvironment and can be overcome by inhibiting mitochondrial function in epithelial cancer cells. Cancer Biol Ther 12:924–938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Madeo A, Maggiolini M (2010) Nuclear alternate estrogen receptor GPR30 mediates 17beta-estradiol-induced gene expression and migration in breast cancer-associated fibroblasts. Cancer Res 70:6036–6046

    Article  CAS  PubMed  Google Scholar 

  65. Normanno N, Di Maio M, De Maio E et al (2005) Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12:721–747

    Article  CAS  PubMed  Google Scholar 

  66. Mo Z, Liu M, Yang F et al (2013) GPR30 as an initiator of tamoxifen resistance in hormone-dependent breast cancer. Breast Cancer Res 15:R114

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione Italiana Ricerca sul Cancro (AIRC) grant IG11595. Futuro in Ricerca 2012 RBFR12FI27 to IB. European Commission/FSE/Regione Calabria to FC and SP. MM was supported by Associazione Italiana per la Ricerca sul Cancro (project no. 12849/2012), AIRC project Calabria 2011 (http://www.airc.it/) and Fondazione Cassa di Risparmio di Calabria e Lucania.

Conflict of interest

The authors declared no conflict of interest and no financial relationship with the organization that sponsored the research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sebastiano Andò or Ines Barone.

Additional information

Stefania Catalano and Cinzia Giordano are joint first authors. Sebastiano Andò and Ines Barone joint senior authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPT 151 kb)

Supplementary material 2 (PPT 216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalano, S., Giordano, C., Panza, S. et al. Tamoxifen through GPER upregulates aromatase expression: a novel mechanism sustaining tamoxifen-resistant breast cancer cell growth. Breast Cancer Res Treat 146, 273–285 (2014). https://doi.org/10.1007/s10549-014-3017-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3017-4

Keywords

Navigation