Skip to main content

Advertisement

Log in

CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

An Erratum to this article was published on 12 November 2010

Abstract

Chemokines, small pro-inflammatory chemoattractant cytokines that bind to specific G-protein-coupled seven-span transmembrane receptors, are major regulators of cell trafficking and adhesion. The chemokine CXCL12 (also called stromal-derived factor-1) is an important α-chemokine that binds primarily to its cognate receptor CXCR4 and thus regulates the trafficking of normal and malignant cells. For many years, it was believed that CXCR4 was the only receptor for CXCL12. Yet, recent work has demonstrated that CXCL12 also binds to another seven-transmembrane span receptor called CXCR7. Our group and others have established critical roles for CXCR4 and CXCR7 on mediating tumor metastasis in several types of cancers, in addition to their contributions as biomarkers of tumor behavior as well as potential therapeutic targets. Here, we review the current concepts regarding the role of CXCL12 / CXCR4 / CXCR7 axis activation, which regulates the pattern of tumor growth and metastatic spread to organs expressing high levels of CXCL12 to develop secondary tumors. We also summarize recent therapeutic approaches to target these receptors and/or their ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vindrieux, D., Escobar, P., & Lazennec, G. (2009). Emerging roles of chemokines in prostate cancer. Endocrine-Related Cancer, 16(3), 663–673.

    Article  CAS  PubMed  Google Scholar 

  2. Ransohoff, R. M. (2009). Chemokines and chemokine receptors: Standing at the crossroads of immunobiology and neurobiology. Immunity, 31(5), 711–721.

    Article  CAS  PubMed  Google Scholar 

  3. Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). Cxc chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.

    Article  CAS  PubMed  Google Scholar 

  4. New, D. C., & Wong, Y. H. (2003). Cc chemokine receptor-coupled signalling pathways. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai), 35(9), 779–788.

    CAS  Google Scholar 

  5. Rot, A., & von Andrian, U. H. (2004). Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annual Review of Immunology, 22, 891–928.

    Article  CAS  PubMed  Google Scholar 

  6. Lazennec, G., & Richmond, A. (2010). Chemokines and chemokine receptors: New insights into cancer-related inflammation. Trends Mol Med, 16(3), 133–144.

    Article  CAS  PubMed  Google Scholar 

  7. Keeley, E. C., Mehrad, B., & Strieter, R. M. (2010). Cxc chemokines in cancer angiogenesis and metastases. Adv Cancer Res, 106, 91–111.

    Article  CAS  PubMed  Google Scholar 

  8. Kruizinga, R. C., Bestebroer, J., Berghuis, P., de Haas, C. J., Links, T. P., de Vries, E. G., et al. (2009). Role of chemokines and their receptors in cancer. Current Pharmaceutical Design, 15(29), 3396–3416.

    Article  CAS  PubMed  Google Scholar 

  9. Allinen, M., Beroukhim, R., Cai, L., Brennan, C., Lahti-Domenici, J., Huang, H., et al. (2004). Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 6(1), 17–32.

    Article  CAS  PubMed  Google Scholar 

  10. Hartmann, T. N., Burger, M., & Burger, J. A. (2004). The role of adhesion molecules and chemokine receptor cxcr4 (cd184) in small cell lung cancer. Journal of Biological Regulators and Homeostatic Agents, 18(2), 126–130.

    CAS  PubMed  Google Scholar 

  11. Secchiero, P., Celeghini, C., Cutroneo, G., Di Baldassarre, A., Rana, R., & Zauli, G. (2000). Differential effects of stromal derived factor-1 alpha (sdf-1 alpha) on early and late stages of human megakaryocytic development. The Anatomical Record, 260(2), 141–147.

    Article  CAS  PubMed  Google Scholar 

  12. Wright, L. M., Maloney, W., Yu, X., Kindle, L., Collin-Osdoby, P., & Osdoby, P. (2005). Stromal cell-derived factor-1 binding to its chemokine receptor cxcr4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone, 36(5), 840–853.

    Article  CAS  PubMed  Google Scholar 

  13. Gillette, J. M., Larochelle, A., Dunbar, C. E., & Lippincott-Schwartz, J. (2009). Intercellular transfer to signalling endosomes regulates an ex vivo bone marrow niche. Nature Cell Biology, 11(3), 303–311.

    Article  CAS  PubMed  Google Scholar 

  14. Hayakawa, J., Migita, M., Ueda, T., Fukazawa, R., Adachi, K., Ooue, Y., et al. (2009). Dextran sulfate and stromal cell derived factor-1 promote cxcr4 expression and improve bone marrow homing efficiency of infused hematopoietic stem cells. Journal of Nippon Medical School, 76(4), 198–208.

    Article  CAS  PubMed  Google Scholar 

  15. Kyriakou, C., Rabin, N., Pizzey, A., Nathwani, A., & Yong, K. (2008). Factors that influence short-term homing of human bone marrow-derived mesenchymal stem cells in a xenogeneic animal model. Haematologica, 93(10), 1457–1465.

    Article  CAS  PubMed  Google Scholar 

  16. Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., & Honjo, T. (1993). Signal sequence trap: A cloning strategy for secreted proteins and type i membrane proteins. Science, 261(5121), 600–603.

    Article  CAS  PubMed  Google Scholar 

  17. Dettin, M., Pasquato, A., Scarinci, C., Zanchetta, M., De Rossi, A., & Di Bello, C. (2004). Anti-hiv activity and conformational studies of peptides derived from the c-terminal sequence of sdf-1. Journal of Medicinal Chemistry, 47(12), 3058–3064.

    Article  CAS  PubMed  Google Scholar 

  18. Janowski, M. (2009). Functional diversity of sdf-1 splicing variants. Cell Adhesion & Migration, 3(3), 243–249.

    Article  Google Scholar 

  19. Kucia, M., Wojakowski, W., Reca, R., Machalinski, B., Gozdzik, J., Majka, M., et al. (2006). The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an sdf-1-, hgf-, and life-dependent manner. Archivum Immunologiae et Therapiae Experimentalis (Warsz), 54(2), 121–135.

    Article  CAS  Google Scholar 

  20. Yu, L., Cecil, J., Peng, S. B., Schrementi, J., Kovacevic, S., Paul, D., et al. (2006). Identification and expression of novel isoforms of human stromal cell-derived factor 1. Gene, 374, 174–179.

    Article  CAS  PubMed  Google Scholar 

  21. Neiva, K., Sun, Y. X., & Taichman, R. S. (2005). The role of osteoblasts in regulating hematopoietic stem cell activity and tumor metastasis. Brazilian Journal of Medical and Biological Research, 38(10), 1449–1454.

    Article  CAS  PubMed  Google Scholar 

  22. Jung, Y., Wang, J., Schneider, A., Sun, Y. X., Koh-Paige, A. J., Osman, N. I., et al. (2006). Regulation of sdf-1 (cxcl12) production by osteoblasts; a possible mechanism for stem cell homing. Bone, 38(4), 497–508.

    Article  CAS  PubMed  Google Scholar 

  23. Taichman, R. S., Cooper, C., Keller, E. T., Pienta, K. J., Taichman, N. S., & McCauley, L. K. (2002). Use of the stromal cell-derived factor-1/cxcr4 pathway in prostate cancer metastasis to bone. Cancer Research, 62(6), 1832–1837.

    CAS  PubMed  Google Scholar 

  24. Peled, A., Petit, I., Kollet, O., Magid, M., Ponomaryov, T., Byk, T., et al. (1999). Dependence of human stem cell engraftment and repopulation of nod/scid mice on cxcr4. Science, 283(5403), 845–848.

    Article  CAS  PubMed  Google Scholar 

  25. Ponomaryov, T., Peled, A., Petit, I., Taichman, R. S., Habler, L., Sandbank, J., et al. (2000). Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function. Journal of Clinical Investigation, 106(11), 1331–1339.

    Article  CAS  PubMed  Google Scholar 

  26. Petit, I., Szyper-Kravitz, M., Nagler, A., Lahav, M., Peled, A., Habler, L., et al. (2002). G-csf induces stem cell mobilization by decreasing bone marrow sdf-1 and up-regulating cxcr4. Nature Immunology, 3(7), 687–694.

    Article  CAS  PubMed  Google Scholar 

  27. Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through hif-1 induction of sdf-1. Natural Medicines, 10(8), 858–864.

    Article  CAS  Google Scholar 

  28. Caruz, A., Samsom, M., Alonso, J. M., Alcami, J., Baleux, F., Virelizier, J. L., et al. (1998). Genomic organization and promoter characterization of human cxcr4 gene. FEBS Letters, 426(2), 271–278.

    Article  CAS  PubMed  Google Scholar 

  29. Gupta, S. K., & Pillarisetti, K. (1999). Cutting edge: Cxcr4-lo: Molecular cloning and functional expression of a novel human cxcr4 splice variant. Journal of Immunology, 163(5), 2368–2372.

    CAS  Google Scholar 

  30. Wegner, S. A., Ehrenberg, P. K., Chang, G., Dayhoff, D. E., Sleeker, A. L., & Michael, N. L. (1998). Genomic organization and functional characterization of the chemokine receptor cxcr4, a major entry co-receptor for human immunodeficiency virus type 1. The Journal of Biological Chemistry, 273(8), 4754–4760.

    Article  CAS  PubMed  Google Scholar 

  31. Zou, Y. R., Kottmann, A. H., Kuroda, M., Taniuchi, I., & Littman, D. R. (1998). Function of the chemokine receptor cxcr4 in haematopoiesis and in cerebellar development. Nature, 393(6685), 595–599.

    Article  CAS  PubMed  Google Scholar 

  32. Feil, C., & Augustin, H. G. (1998). Endothelial cells differentially express functional cxc-chemokine receptor-4 (cxcr-4/fusin) under the control of autocrine activity and exogenous cytokines. Biochemical and Biophysical Research Communications, 247(1), 38–45.

    Article  CAS  PubMed  Google Scholar 

  33. Lazarini, F., Casanova, P., Tham, T. N., De Clercq, E., Arenzana-Seisdedos, F., Baleux, F., et al. (2000). Differential signalling of the chemokine receptor cxcr4 by stromal cell-derived factor 1 and the hiv glycoprotein in rat neurons and astrocytes. The European Journal of Neuroscience, 12(1), 117–125.

    Article  CAS  PubMed  Google Scholar 

  34. Aiuti, A., Tavian, M., Cipponi, A., Ficara, F., Zappone, E., Hoxie, J., et al. (1999). Expression of cxcr4, the receptor for stromal cell-derived factor-1 on fetal and adult human lympho-hematopoietic progenitors. European Journal of Immunology, 29(6), 1823–1831.

    Article  CAS  PubMed  Google Scholar 

  35. Aiuti, A., Webb, I. J., Bleul, C., Springer, T., & Gutierrez-Ramos, J. C. (1997). The chemokine sdf-1 is a chemoattractant for human cd34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of cd34+ progenitors to peripheral blood. The Journal of Experimental Medicine, 185(1), 111–120.

    Article  CAS  PubMed  Google Scholar 

  36. Doitsidou, M., Reichman-Fried, M., Stebler, J., Koprunner, M., Dorries, J., Meyer, D., et al. (2002). Guidance of primordial germ cell migration by the chemokine sdf-1. Cell, 111(5), 647–659.

    Article  CAS  PubMed  Google Scholar 

  37. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of b-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the cxc chemokine pbsf/sdf-1. Nature, 382(6592), 635–638.

    Article  CAS  PubMed  Google Scholar 

  38. Lee, R. L., Westendorf, J., & Gold, M. R. (2007). Differential role of reactive oxygen species in the activation of mitogen-activated protein kinases and akt by key receptors on b-lymphocytes: Cd40, the b cell antigen receptor, and cxcr4. Journal of Cell Communication and Signaling, 1(1), 33–43.

    Article  PubMed  Google Scholar 

  39. Lu, D. Y., Tang, C. H., Yeh, W. L., Wong, K. L., Lin, C. P., Chen, Y. H., et al. (2009). Sdf-1alpha up-regulates interleukin-6 through cxcr4, pi3k/akt, erk, and nf-kappab-dependent pathway in microglia. European Journal of Pharmacology, 613(1–3), 146–154.

    Article  CAS  PubMed  Google Scholar 

  40. Princen, K., Hatse, S., Vermeire, K., De Clercq, E., & Schols, D. (2003). Evaluation of sdf-1/cxcr4-induced ca2+ signaling by fluorometric imaging plate reader (flipr) and flow cytometry. Cytometry. Part A, 51(1), 35–45.

    Article  CAS  Google Scholar 

  41. Roland, J., Murphy, B. J., Ahr, B., Robert-Hebmann, V., Delauzun, V., Nye, K. E., et al. (2003). Role of the intracellular domains of cxcr4 in sdf-1-mediated signaling. Blood, 101(2), 399–406.

    Article  CAS  PubMed  Google Scholar 

  42. Balkwill, F. (2004). Cancer and the chemokine network. Nature Reviews. Cancer, 4(7), 540–550.

    Article  CAS  PubMed  Google Scholar 

  43. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410(6824), 50–56.

    Article  CAS  PubMed  Google Scholar 

  44. Scotton, C. J., Wilson, J. L., Milliken, D., Stamp, G., & Balkwill, F. R. (2001). Epithelial cancer cell migration: A role for chemokine receptors? Cancer Research, 61(13), 4961–4965.

    CAS  PubMed  Google Scholar 

  45. Zagzag, D., Lukyanov, Y., Lan, L., Ali, M. A., Esencay, M., Mendez, O., et al. (2006). Hypoxia-inducible factor 1 and vegf upregulate cxcr4 in glioblastoma: Implications for angiogenesis and glioma cell invasion. Laboratory Investigation, 86(12), 1221–1232.

    Article  CAS  PubMed  Google Scholar 

  46. Burns, J. M., Summers, B. C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., et al. (2006). A novel chemokine receptor for sdf-1 and i-tac involved in cell survival, cell adhesion, and tumor development. The Journal of Experimental Medicine, 203(9), 2201–2213.

    Article  CAS  PubMed  Google Scholar 

  47. Balabanian, K., Lagane, B., Infantino, S., Chow, K. Y., Harriague, J., Moepps, B., et al. (2005). The chemokine sdf-1/cxcl12 binds to and signals through the orphan receptor rdc1 in t lymphocytes. The Journal of Biological Chemistry, 280(42), 35760–35766.

    Article  CAS  PubMed  Google Scholar 

  48. Libert, F., Parmentier, M., Lefort, A., Dumont, J. E., & Vassart, G. (1990). Complete nucleotide sequence of a putative G protein coupled receptor: Rdc1. Nucleic Acids Research, 18(7), 1917.

    Article  CAS  PubMed  Google Scholar 

  49. Jones, S. W., Brockbank, S. M., Mobbs, M. L., Le Good, N. J., Soma-Haddrick, S., Heuze, A. J., et al. (2006). The orphan G-protein coupled receptor rdc1: Evidence for a role in chondrocyte hypertrophy and articular cartilage matrix turnover. Osteoarthritis and Cartilage, 14(6), 597–608.

    Article  CAS  PubMed  Google Scholar 

  50. Raggo, C., Ruhl, R., McAllister, S., Koon, H., Dezube, B. J., Fruh, K., et al. (2005). Novel cellular genes essential for transformation of endothelial cells by kaposi's sarcoma-associated herpesvirus. Cancer Research, 65(12), 5084–5095.

    Article  CAS  PubMed  Google Scholar 

  51. Martinez, A., Kapas, S., Miller, M. J., Ward, Y., & Cuttitta, F. (2000). Coexpression of receptors for adrenomedullin, calcitonin gene-related peptide, and amylin in pancreatic beta-cells. Endocrinology, 141(1), 406–411.

    Article  CAS  PubMed  Google Scholar 

  52. Tripathi, V., Verma, R., Dinda, A., Malhotra, N., Kaur, J., & Luthra, K. (2009). Differential expression of rdc1/cxcr7 in the human placenta. Journal of Clinical Immunology, 29(3), 379–386.

    Article  CAS  PubMed  Google Scholar 

  53. Miao, Z., Luker, K. E., Summers, B. C., Berahovich, R., Bhojani, M. S., Rehemtulla, A., et al. (2007). Cxcr7 (rdc1) promotes breast and lung tumor growth in vivo and is expressed on tumor-associated vasculature. Proceedings of the National Academy of Sciences of the United States of America, 104(40), 15735–15740.

    Article  CAS  PubMed  Google Scholar 

  54. Wang, J., Shiozawa, Y., Wang, Y., Jung, Y., Pienta, K. J., Mehra, R., et al. (2008). The role of cxcr7/rdc1 as a chemokine receptor for cxcl12/sdf-1 in prostate cancer. The Journal of Biological Chemistry, 283(7), 4283–4294.

    Article  CAS  PubMed  Google Scholar 

  55. Begley, L. A., MacDonald, J. W., Day, M. L., & Macoska, J. A. (2007). Cxcl12 activates a robust transcriptional response in human prostate epithelial cells. The Journal of Biological Chemistry, 282(37), 26767–26774.

    Article  CAS  PubMed  Google Scholar 

  56. Rajagopal, S., Kim, J., Ahn, S., Craig, S., Lam, C. M., Gerard, N. P., et al. (2010). Beta-arrestin- but not G protein-mediated signaling by the “Decoy” Receptor cxcr7. Proc Natl Acad Sci U S A, 107(2), 628–632.

    Article  PubMed  Google Scholar 

  57. Boldajipour, B., Mahabaleshwar, H., Kardash, E., Reichman-Fried, M., Blaser, H., Minina, S., et al. (2008). Control of chemokine-guided cell migration by ligand sequestration. Cell, 132(3), 463–473.

    Article  CAS  PubMed  Google Scholar 

  58. Dambly-Chaudiere, C., Cubedo, N., & Ghysen, A. (2007). Control of cell migration in the development of the posterior lateral line: Antagonistic interactions between the chemokine receptors cxcr4 and cxcr7/rdc1. BMC Developmental Biology, 7, 23.

    Article  PubMed  CAS  Google Scholar 

  59. Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F., & Lagane, B. (2009). Cxcr7 heterodimerizes with cxcr4 and regulates cxcl12-mediated G protein signaling. Blood, 113(24), 6085–6093.

    Article  CAS  PubMed  Google Scholar 

  60. Sierro, F., Biben, C., Martinez-Munoz, L., Mellado, M., Ransohoff, R. M., Li, M., et al. (2007). Disrupted cardiac development but normal hematopoiesis in mice deficient in the second cxcl12/sdf-1 receptor, cxcr7. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 14759–14764.

    Article  CAS  PubMed  Google Scholar 

  61. Hartmann, T. N., Grabovsky, V., Pasvolsky, R., Shulman, Z., Buss, E. C., Spiegel, A., et al. (2008). A crosstalk between intracellular cxcr7 and cxcr4 involved in rapid cxcl12-triggered integrin activation but not in chemokine-triggered motility of human t lymphocytes and cd34+ cells. Journal of Leukocyte Biology, 84(4), 1130–1140.

    Article  CAS  PubMed  Google Scholar 

  62. Kalatskaya, I., Berchiche, Y. A., Gravel, S., Limberg, B. J., Rosenbaum, J. S., & Heveker, N. (2009). Amd3100 is a cxcr7 ligand with allosteric agonist properties. Molecular Pharmacology, 75(5), 1240–1247.

    Article  CAS  PubMed  Google Scholar 

  63. Luker, K. E., Gupta, M., Steele, J. M., Foerster, B. R., & Luker, G. D. (2009). Imaging ligand-dependent activation of cxcr7. Neoplasia, 11(10), 1022–1035.

    CAS  PubMed  Google Scholar 

  64. Fernandis, A. Z., Cherla, R. P., Chernock, R. D., & Ganju, R. K. (2002). Cxcr4/ccr5 down-modulation and chemotaxis are regulated by the proteasome pathway. The Journal of Biological Chemistry, 277(20), 18111–18117.

    Article  CAS  PubMed  Google Scholar 

  65. Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Cook, K., et al. (2005). Skeletal localization and neutralization of the sdf-1(cxcl12)/cxcr4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20(2), 318–329.

    Article  CAS  PubMed  Google Scholar 

  66. Engl, T., Relja, B., Marian, D., Blumenberg, C., Muller, I., Beecken, W. D., et al. (2006). Cxcr4 chemokine receptor mediates prostate tumor cell adhesion through alpha5 and beta3 integrins. Neoplasia, 8(4), 290–301.

    Article  CAS  PubMed  Google Scholar 

  67. Kukreja, P., Abdel-Mageed, A. B., Mondal, D., Liu, K., & Agrawal, K. C. (2005). Up-regulation of cxcr4 expression in pc-3 cells by stromal-derived factor-1alpha (cxcl12) increases endothelial adhesion and transendothelial migration: Role of mek/erk signaling pathway-dependent nf-kappab activation. Cancer Research, 65(21), 9891–9898.

    Article  CAS  PubMed  Google Scholar 

  68. Sun, Y. X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of cxcr4 and cxcl12 (sdf-1) in human prostate cancers (pca) in vivo. Journal of Cellular Biochemistry, 89(3), 462–473.

    Article  CAS  PubMed  Google Scholar 

  69. Darash-Yahana, M., Pikarsky, E., Abramovitch, R., Zeira, E., Pal, B., Karplus, R., et al. (2004). Role of high expression levels of cxcr4 in tumor growth, vascularization, and metastasis. The FASEB Journal, 18(11), 1240–1242.

    CAS  PubMed  Google Scholar 

  70. Wang, J., Sun, Y., Song, W., Nor, J. E., Wang, C. Y., & Taichman, R. S. (2005). Diverse signaling pathways through the sdf-1/cxcr4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cellular Signalling, 17(12), 1578–1592.

    Article  CAS  PubMed  Google Scholar 

  71. Wang, J., Dai, J., Jung, Y., Wei, C. L., Wang, Y., Havens, A. M., et al. (2007). A glycolytic mechanism regulating an angiogenic switch in prostate cancer. Cancer Research, 67(1), 149–159.

    Article  CAS  PubMed  Google Scholar 

  72. Zhao, H., & Peehl, D. M. (2009). Tumor-promoting phenotype of cd90hi prostate cancer-associated fibroblasts. The Prostate, 69(9), 991–1000.

    Article  CAS  PubMed  Google Scholar 

  73. Ratajczak, M. Z., Reca, R., Wysoczynski, M., Yan, J., & Ratajczak, J. (2006). Modulation of the sdf-1-cxcr4 axis by the third complement component (c3)—Implications for trafficking of cxcr4+ stem cells. Experimental Hematology, 34(8), 986–995.

    Article  CAS  PubMed  Google Scholar 

  74. Hermann, P. C., Huber, S. L., Herrler, T., Aicher, A., Ellwart, J. W., Guba, M., et al. (2007). Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 1(3), 313–323.

    Article  CAS  PubMed  Google Scholar 

  75. Mazzinghi, B., Ronconi, E., Lazzeri, E., Sagrinati, C., Ballerini, L., Angelotti, M. L., et al. (2008). Essential but differential role for cxcr4 and cxcr7 in the therapeutic homing of human renal progenitor cells. The Journal of Experimental Medicine, 205(2), 479–490.

    Article  CAS  PubMed  Google Scholar 

  76. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.

    Article  CAS  PubMed  Google Scholar 

  77. Liang, Z., Yoon, Y., Votaw, J., Goodman, M. M., Williams, L., & Shim, H. (2005). Silencing of cxcr4 blocks breast cancer metastasis. Cancer Research, 65(3), 967–971.

    CAS  PubMed  Google Scholar 

  78. Ueda, Y., Neel, N. F., Schutyser, E., Raman, D., & Richmond, A. (2006). Deletion of the cooh-terminal domain of cxc chemokine receptor 4 leads to the down-regulation of cell-to-cell contact, enhanced motility and proliferation in breast carcinoma cells. Cancer Research, 66(11), 5665–5675.

    Article  CAS  PubMed  Google Scholar 

  79. Holland, J. D., Kochetkova, M., Akekawatchai, C., Dottore, M., Lopez, A., & McColl, S. R. (2006). Differential functional activation of chemokine receptor cxcr4 is mediated by G proteins in breast cancer cells. Cancer Research, 66(8), 4117–4124.

    Article  CAS  PubMed  Google Scholar 

  80. Fulton, A. M. (2009). The chemokine receptors cxcr4 and cxcr3 in cancer. Current Oncology Reports, 11(2), 125–131.

    Article  CAS  PubMed  Google Scholar 

  81. Akekawatchai, C., Holland, J. D., Kochetkova, M., Wallace, J. C., & McColl, S. R. (2005). Transactivation of cxcr4 by the insulin-like growth factor-1 receptor (igf-1r) in human mda-mb-231 breast cancer epithelial cells. The Journal of Biological Chemistry, 280(48), 39701–39708.

    Article  CAS  PubMed  Google Scholar 

  82. Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated sdf-1/cxcl12 secretion. Cell, 121(3), 335–348.

    Article  CAS  PubMed  Google Scholar 

  83. Razmkhah, M., Talei, A. R., Doroudchi, M., Khalili-Azad, T., & Ghaderi, A. (2005). Stromal cell-derived factor-1 (sdf-1) alleles and susceptibility to breast carcinoma. Cancer Letters, 225(2), 261–266.

    Article  CAS  PubMed  Google Scholar 

  84. Cabioglu, N., Summy, J., Miller, C., Parikh, N. U., Sahin, A. A., Tuzlali, S., et al. (2005). Cxcl-12/stromal cell-derived factor-1alpha transactivates her2-neu in breast cancer cells by a novel pathway involving src kinase activation. Cancer Research, 65(15), 6493–6497.

    Article  CAS  PubMed  Google Scholar 

  85. Salmaggi, A., Maderna, E., Calatozzolo, C., Gaviani, P., Canazza, A., Milanesi, I., et al. (2009). Cxcl12, cxcr4 and cxcr7 expression in brain metastases. Cancer Biology & Therapy, 8(17), 1608–1614.

    Article  CAS  Google Scholar 

  86. Burger, J. A., & Kipps, T. J. (2006). Cxcr4: A key receptor in the crosstalk between tumor cells and their microenvironment. Blood, 107(5), 1761–1767.

    Article  CAS  PubMed  Google Scholar 

  87. Burger, M., Glodek, A., Hartmann, T., Schmitt-Graff, A., Silberstein, L. E., Fujii, N., et al. (2003). Functional expression of cxcr4 (cd184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene, 22(50), 8093–8101.

    Article  CAS  PubMed  Google Scholar 

  88. Hartmann, T. N., Burger, J. A., Glodek, A., Fujii, N., & Burger, M. (2005). Cxcr4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (sclc) cells. Oncogene, 24(27), 4462–4471.

    Article  CAS  PubMed  Google Scholar 

  89. Su, L. P., Zhang, J. P., Xu, H. B., Chen, J., Wang, Y., & Xiong, S. D. (2005). the role of cxcr4 in lung cancer metastasis and its possible mechanism. Zhonghua Yi Xue Za Zhi, 85(17), 1190–1194.

    CAS  PubMed  Google Scholar 

  90. Kijima, T., Maulik, G., Ma, P. C., Tibaldi, E. V., Turner, R. E., Rollins, B., et al. (2002). Regulation of cellular proliferation, cytoskeletal function, and signal transduction through cxcr4 and c-kit in small cell lung cancer cells. Cancer Research, 62(21), 6304–6311.

    CAS  PubMed  Google Scholar 

  91. Phillips, R. J., Mestas, J., Gharaee-Kermani, M., Burdick, M. D., Sica, A., Belperio, J. A., et al. (2005). Epidermal growth factor and hypoxia-induced expression of cxc chemokine receptor 4 on non-small cell lung cancer cells is regulated by the phosphatidylinositol 3-kinase/pten/akt/mammalian target of rapamycin signaling pathway and activation of hypoxia inducible factor-1alpha. The Journal of Biological Chemistry, 280(23), 22473–22481.

    Article  CAS  PubMed  Google Scholar 

  92. Iwakiri, S., Mino, N., Takahashi, T., Sonobe, M., Nagai, S., Okubo, K., et al. (2009). Higher expression of chemokine receptor cxcr7 is linked to early and metastatic recurrence in pathological stage I nonsmall cell lung cancer. Cancer, 115(11), 2580–2593.

    Article  CAS  PubMed  Google Scholar 

  93. Billadeau, D. D., Chatterjee, S., Bramati, P., Sreekumar, R., Shah, V., Hedin, K., et al. (2006). Characterization of the cxcr4 signaling in pancreatic cancer cells. International Journal of Gastrointestinal Cancer, 37(4), 110–119.

    PubMed  Google Scholar 

  94. Mori, T., Doi, R., Koizumi, M., Toyoda, E., Ito, D., Kami, K., et al. (2004). Cxcr4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Molecular Cancer Therapeutics, 3(1), 29–37.

    CAS  PubMed  Google Scholar 

  95. Koshiba, T., Hosotani, R., Miyamoto, Y., Ida, J., Tsuji, S., Nakajima, S., et al. (2000). Expression of stromal cell-derived factor 1 and cxcr4 ligand receptor system in pancreatic cancer: A possible role for tumor progression. Clinical Cancer Research, 6(9), 3530–3535.

    CAS  PubMed  Google Scholar 

  96. Marchesi, F., Monti, P., Leone, B. E., Zerbi, A., Vecchi, A., Piemonti, L., et al. (2004). Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional cxcr4. Cancer Research, 64(22), 8420–8427.

    Article  CAS  PubMed  Google Scholar 

  97. Gao, Z., Wang, X., Wu, K., Zhao, Y., & Hu, G. (2010). Pancreatic stellate cells increase the invasion of human pancreatic cancer cells through the stromal cell-derived factor-1/cxcr4 axis. Pancreatology, 10(2–3), 186–193.

    Article  PubMed  Google Scholar 

  98. Marechal, R., Demetter, P., Nagy, N., Berton, A., Decaestecker, C., Polus, M., et al. (2009). High expression of cxcr4 may predict poor survival in resected pancreatic adenocarcinoma. British Journal of Cancer, 100(9), 1444–1451.

    Article  CAS  PubMed  Google Scholar 

  99. Jankowski, K., Kucia, M., Wysoczynski, M., Reca, R., Zhao, D., Trzyna, E., et al. (2003). Both hepatocyte growth factor (hgf) and stromal-derived factor-1 regulate the metastatic behavior of human rhabdomyosarcoma cells, but only hgf enhances their resistance to radiochemotherapy. Cancer Research, 63(22), 7926–7935.

    CAS  PubMed  Google Scholar 

  100. Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor cxcr4. Seminars in Cancer Biology, 14(3), 171–179.

    Article  CAS  PubMed  Google Scholar 

  101. Bertolini, F., Dell’Agnola, C., Mancuso, P., Rabascio, C., Burlini, A., Monestiroli, S., et al. (2002). Cxcr4 neutralization, a novel therapeutic approach for non-Hodgkin’s lymphoma. Cancer Research, 62(11), 3106–3112.

    CAS  PubMed  Google Scholar 

  102. Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., Fricker, S., et al. (2002). Multiple actions of the chemokine cxcl12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62(20), 5930–5938.

    CAS  PubMed  Google Scholar 

  103. Zhou, Y., Larsen, P. H., Hao, C., & Yong, V. W. (2002). Cxcr4 is a major chemokine receptor on glioma cells and mediates their survival. The Journal of Biological Chemistry, 277(51), 49481–49487.

    Article  CAS  PubMed  Google Scholar 

  104. Rubin, J. B., Kung, A. L., Klein, R. S., Chan, J. A., Sun, Y., Schmidt, K., et al. (2003). A small-molecule antagonist of cxcr4 inhibits intracranial growth of primary brain tumors. Proceedings of the National Academy of Sciences of the United States of America, 100(23), 13513–13518.

    Article  CAS  PubMed  Google Scholar 

  105. Sehgal, A., Keener, C., Boynton, A. L., Warrick, J., & Murphy, G. P. (1998). Cxcr-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. Journal of Surgical Oncology, 69(2), 99–104.

    Article  CAS  PubMed  Google Scholar 

  106. Kim, J., Mori, T., Chen, S. L., Amersi, F. F., Martinez, S. R., Kuo, C., et al. (2006). Chemokine receptor cxcr4 expression in patients with melanoma and colorectal cancer liver metastases and the association with disease outcome. Annals of Surgery, 244(1), 113–120.

    Article  PubMed  Google Scholar 

  107. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., et al. (2001). A possible role for cxcr4 and its ligand, the cxc chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Journal of Immunology, 167(8), 4747–4757.

    CAS  Google Scholar 

  108. Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of cxcr4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11(5), 1835–1841.

    Article  CAS  PubMed  Google Scholar 

  109. Zeelenberg, I. S., Ruuls-Van Stalle, L., & Roos, E. (2003). The chemokine receptor cxcr4 is required for outgrowth of colon carcinoma micrometastases. Cancer Research, 63(13), 3833–3839.

    CAS  PubMed  Google Scholar 

  110. Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F. G., Ratajczak, J., et al. (2010) Overlapping and distinct role of cxcr7-sdf-1/itac and cxcr4-sdf-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int J Cancer (in press).

  111. Libura, J., Drukala, J., Majka, M., Tomescu, O., Navenot, J. M., Kucia, M., et al. (2002). Cxcr4-sdf-1 signaling is active in rhabdomyosarcoma cells and regulates locomotion, chemotaxis, and adhesion. Blood, 100(7), 2597–2606.

    Article  CAS  PubMed  Google Scholar 

  112. Tarnowski, M., Grymula, K., Reca, R., Jankowski, K., Maksym, R., Tarnowska, J., et al. (2010). Regulation of expression of stromal-derived factor-1 receptors: Cxcr4 and cxcr7 in human rhabdomyosarcomas. Mol Cancer Res, 8(1), 1–14.

    Article  CAS  PubMed  Google Scholar 

  113. Matsunaga, T., Takemoto, N., Sato, T., Takimoto, R., Tanaka, I., Fujimi, A., et al. (2003). Interaction between leukemic-cell vla-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia. Natural Medicines, 9(9), 1158–1165.

    Article  CAS  Google Scholar 

  114. Sanz-Rodriguez, F., Hidalgo, A., & Teixido, J. (2001). Chemokine stromal cell-derived factor-1alpha modulates vla-4 integrin-mediated multiple myeloma cell adhesion to cs-1/fibronectin and vcam-1. Blood, 97(2), 346–351.

    Article  CAS  PubMed  Google Scholar 

  115. Dvorak, H. F. (1986). Tumors: Wounds that do not heal. Similarities between tumor stroma generation and wound healing. The New England journal of medicine, 315(26), 1650–1659.

    Article  CAS  PubMed  Google Scholar 

  116. Horgan, K., Jones, D. L., & Mansel, R. E. (1987). Mitogenicity of human fibroblasts in vivo for human breast cancer cells. The British Journal of Surgery, 74(3), 227–229.

    Article  CAS  PubMed  Google Scholar 

  117. Ronnov-Jessen, L., Petersen, O. W., Koteliansky, V. E., & Bissell, M. J. (1995). The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. The Journal of clinical investigation, 95(2), 859–873.

    Article  CAS  PubMed  Google Scholar 

  118. Clarke, M. F., & Fuller, M. (2006). Stem cells and cancer: Two faces of eve. Cell, 124(6), 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  119. Li, L., & Neaves, W. B. (2006). Normal stem cells and cancer stem cells: The niche matters. Cancer Research, 66(9), 4553–4557.

    Article  CAS  PubMed  Google Scholar 

  120. Polyak, K., & Hahn, W. C. (2006). Roots and stems: Stem cells in cancer. Natural Medicines, 12(3), 296–300.

    Article  CAS  Google Scholar 

  121. Rak, J. (2006). Is cancer stem cell a cell, or a multicellular unit capable of inducing angiogenesis? Medical Hypotheses, 66(3), 601–604.

    Article  CAS  PubMed  Google Scholar 

  122. Yilmaz, O. H., Valdez, R., Theisen, B. K., Guo, W., Ferguson, D. O., Wu, H., et al. (2006). Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature, 441(7092), 475–482.

    Article  CAS  PubMed  Google Scholar 

  123. Begley, L., Monteleon, C., Shah, R. B., Macdonald, J. W., & Macoska, J. A. (2005). Cxcl12 overexpression and secretion by aging fibroblasts enhance human prostate epithelial proliferation in vitro. Aging Cell, 4(6), 291–298.

    Article  CAS  PubMed  Google Scholar 

  124. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). Vegfr1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  CAS  PubMed  Google Scholar 

  125. Houshmand, P., & Zlotnik, A. (2003). Targeting tumor cells. Current Opinion in Cell Biology, 15(5), 640–644.

    Article  CAS  PubMed  Google Scholar 

  126. Ao, M., Franco, O. E., Park, D., Raman, D., Williams, K., & Hayward, S. W. (2007). Cross-talk between paracrine-acting cytokine and chemokine pathways promotes malignancy in benign human prostatic epithelium. Cancer Research, 67(9), 4244–4253.

    Article  CAS  PubMed  Google Scholar 

  127. Zhang, L., Yeger, H., Das, B., Irwin, M. S., & Baruchel, S. (2007). Tissue microenvironment modulates cxcr4 expression and tumor metastasis in neuroblastoma. Neoplasia, 9(1), 36–46.

    Article  CAS  PubMed  Google Scholar 

  128. Donahue, R. E., Jin, P., Bonifacino, A. C., Metzger, M. E., Ren, J., Wang, E., et al. (2009). Plerixafor (amd3100) and granulocyte colony-stimulating factor (g-csf) mobilize different cd34+ cell populations based on global gene and microrna expression signatures. Blood, 114(12), 2530–2541.

    Article  CAS  PubMed  Google Scholar 

  129. Kim, S. Y., Lee, C. H., Midura, B. V., Yeung, C., Mendoza, A., Hong, S. H., et al. (2008). Inhibition of the cxcr4/cxcl12 chemokine pathway reduces the development of murine pulmonary metastases. Clinical & Experimental Metastasis, 25(3), 201–211.

    Article  CAS  Google Scholar 

  130. Porvasnik, S., Sakamoto, N., Kusmartsev, S., Eruslanov, E., Kim, W. J., Cao, W., et al. (2009). Effects of cxcr4 antagonist ctce-9908 on prostate tumor growth. The Prostate, 69(13), 1460–1469.

    Article  CAS  PubMed  Google Scholar 

  131. Richert, M. M., Vaidya, K. S., Mills, C. N., Wong, D., Korz, W., Hurst, D. R., et al. (2009). Inhibition of cxcr4 by ctce-9908 inhibits breast cancer metastasis to lung and bone. Oncology Reports, 21(3), 761–767.

    CAS  PubMed  Google Scholar 

  132. Hojo, S., Koizumi, K., Tsuneyama, K., Arita, Y., Cui, Z., Shinohara, K., et al. (2007). High-level expression of chemokine cxcl16 by tumor cells correlates with a good prognosis and increased tumor-infiltrating lymphocytes in colorectal cancer. Cancer Research, 67(10), 4725–4731.

    Article  CAS  PubMed  Google Scholar 

  133. Wysoczynski, M., Kucia, M., Ratajczak, J., & Ratajczak, M. Z. (2007). Cleavage fragments of the third complement component (c3) enhance stromal derived factor-1 (sdf-1)-mediated platelet production during reactive postbleeding thrombocytosis. Leukemia, 21(5), 973–982.

    CAS  PubMed  Google Scholar 

  134. Wysoczynski, M., Miekus, K., Jankowski, K., Wanzeck, J., Bertolone, S., Janowska-Wieczorek, A., et al. (2007). Leukemia inhibitory factor: A newly identified metastatic factor in rhabdomyosarcomas. Cancer Research, 67(5), 2131–2140.

    Article  CAS  PubMed  Google Scholar 

  135. McGrath, K. E., Koniski, A. D., Maltby, K. M., McGann, J. K., & Palis, J. (1999). Embryonic expression and function of the chemokine sdf-1 and its receptor, cxcr4. Developmental Biology, 213(2), 442–456.

    Article  CAS  PubMed  Google Scholar 

  136. Mohle, R., Moore, M. A., Nachman, R. L., & Rafii, S. (1997). Transendothelial migration of cd34+ and mature hematopoietic cells: An in vitro study using a human bone marrow endothelial cell line. Blood, 89(1), 72–80.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose excellent work we could not cite owing to space limitation. Research in the authors’ laboratory is supported by the National Natural funding of China (30973012,81071747), National key program (973) for Basic Research of China (NO2010CB504300), Shanghai Education Committee Key Discipline and Specialties Foundation Project Number J50208, and Shanghai Pujiang Program (10PJ1406400). Taichman and Pienta are supported by the National Cancer Institute (CA93900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Wang.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s10555-010-9266-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, X., Cheng, G., Hao, M. et al. CXCL12 / CXCR4 / CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev 29, 709–722 (2010). https://doi.org/10.1007/s10555-010-9256-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9256-x

Keywords

Navigation