Skip to main content

Advertisement

Log in

Construction of SH-EP1-α4β2-hAPP695 Cell Line and Effects of Nicotinic Agonists on β-amyloid in the Cells

  • Original Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

(1) Nicotinic acetylcholine receptors in central nervous system are thought to be new targets for Alzheimer’s disease. However, the most involved nicotinic receptor subtype in Alzheimer’s disease is unclear. α4β2 receptor is the most widely spread subtype in brain, involving in several important aspects of cognitive and other functions. We constructed cell line by transfecting human amyloid precursor protein (695) gene into SH-EP1 cells which have been transfected with human nicotinic receptor α4 subunit and β2 subunit gene, to observe effects of α4β2 receptors activation on β-amyloid, expecting to provide a new cell line for drug screening and research purpose. (2) Liposome transfection was used to express human amyloid precursor protein (695) gene in SH-EP1-α4β2 cells. Function of the transfected α4β2 receptors was tested by patch clamp. Effects of nicotine and epibatidine (selective α4β2 nicotinic receptor agonist) on β-amyloid were detected by Western blot and ELISA. Effects of nicotine and epibatidine on amyloid precursor protein (695) mRNA level were measured using real-time PCR. (3) Human amyloid precursor protein (695) gene was stably expressed in SH-EP1-α4β2 cells; Nicotine (1 μM) and epibatidine (0.1 μM) decreased intracellular and secreted β-amyloid in the cells; and activation of α4β2 receptors did not affect amyloid precursor protein (695) mRNA level. (4) These results suggest that the constructed cell line, expressing both amyloid precursor protein (695) gene and human nicotinic receptor α4 subunit and β2 subunit gene, might be useful for screening specific nicotinic receptor agonists against Alzheimer’s disease. Alteration of Aβ level induced by activation of α4β2 nAChR in our study might occur at a post-translational level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Champtiaux N, Han ZY, Bessis A, Rossi FM, Zoli M, Marubio L et al. (2002) Distribution and pharmacology of alpha 6-containing nicotinic acetylcholine receptors analyzed with mutant mice. J Neurosci 22:1208–1217

    PubMed  CAS  Google Scholar 

  • Dickson DW, Crystal HA, Bevona C, Honer W, Vincent I, Davies P (1995) Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol Aging 16:285–298

    Article  PubMed  CAS  Google Scholar 

  • Dovey HF, John V, Anderson JP, Chen LZ, de Saint Andrieu P et al. (2001) Functional gammasecretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181

    Article  PubMed  CAS  Google Scholar 

  • Dunbar GC, Inglis F, Kuchibhatla R, Sharma T, Tomlinson M, Wamsley J (2007) Effect of ispronicline, a neuronal nicotinic acetylcholine receptor partial agonist, in subjects with age associated memory impairment (AAMI). J Psychopharmacol 21:171–178

    Article  PubMed  CAS  Google Scholar 

  • Ferreira M, Ebert SN, Perry DC, Yasuda RP, Baker CM, Davila-Garcia MI et al. (2001) Evidence of a functional alpha7-neuronal nicotinic receptor subtype located on motoneurons of the dorsal motor nucleus of the vagus. J Pharmacol Exp Ther 296:260–269

    PubMed  CAS  Google Scholar 

  • Fukumoto H, Cheung BS, Hyman BT, Irizarry MC (2002) Beta-secretase protein and activity are increased in the neocortex inAlzheimer disease. Arch Neurol 59:381–1389

    Article  Google Scholar 

  • Gotti C, Clementi F (2004) Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol 74:363–396

    Article  PubMed  CAS  Google Scholar 

  • Gotti C, Riganti L, Vailati S, Clementi F (2006) Brain neuronal nicotinic receptors as new targets for drug discovery. Curr Pharm Des 12:407–428

    Article  PubMed  CAS  Google Scholar 

  • Hellström-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A, Thomas A, Perry E, Bednar I, Nordberg A (2004) Nicotine reduces A beta in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 19:2703–2710

    Article  PubMed  Google Scholar 

  • Holsinger RM, McLean CA, Beyreuther K, Masters CL, Evin G (2002) Increased expression of the amyloid precursor beta-secretase in Alzheimer’s Disease. Ann Neurol 51:783–786

    Article  PubMed  CAS  Google Scholar 

  • Karlin A (2002) Emerging structure of the nicotinic acetylcholine receptors. Nat Rev Neurosci 3:102–114

    Article  PubMed  CAS  Google Scholar 

  • Lena C, de Kerchove D’Exaerde A, Cordero-Erausquin M, Le Novere N, del Mar Arroyo-Jimenez M, Changeux JP (1999) Diversity and distribution of nicotinic acetylcholine receptors in the locus ceruleus neurons. Proc Natl Acad Sci USA 96:2126–12131

    Article  Google Scholar 

  • Lippiello P, Letchworth SR, Gatto GJ, Traina VM, Bencherif M (2006) Ispronicline a novel α4β2 nicotinic acetylcholine receptor–selective agonist with cognition-enhancing and neuroprotective properties. J Mol Neurosci 30:19–20

    Article  PubMed  CAS  Google Scholar 

  • Liu Q, Zhang J, Zhu H, Qin C, Qin C, Zhao Bl (2007) Dissecting the signaling pathway of nicotine-mediated neuroprotection in a mouse Alzheimer disease model. FASEB J 21:61–73

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    Article  PubMed  CAS  Google Scholar 

  • Moehlmann T, Winkler E, Xia X, Edbauer D, Murrell J, Capell A, Kaether C, Zheng H, Ghetti B, Haass C (2002) Presenilin-1 mutations of leucine 166 equally affect the generation of the Notch and APP intracellular domains independent of their effect on Abeta 42 production. Proc Natl Acad Sci USA 99:8025–8030

    Article  PubMed  CAS  Google Scholar 

  • Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer_s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26:10129–10140

    Article  PubMed  CAS  Google Scholar 

  • O’Brien JT, Colloby SJ, Pakrasi S, Perry EK, Pimlott SL, Wyper DJ, McKeith IG, Williams ED (2007) α4β2 nicotinic receptor status in Alzheimer’s disease using 123I-5IA-85380 single-photon-emission computed tomography. J Neurol Neurosurg Psychiatry 78:356–362

    Article  PubMed  CAS  Google Scholar 

  • Oddo S, LaFerla FM (2006) The role of nicotinic acetylcholine receptors in Alzheimer’s disease. J Physiol (Paris) 99:172–179

    Article  CAS  Google Scholar 

  • Pallavicini M, Moroni B, Bolchi C, Cilia A, Clementi F, Fumagalli L, Gotti C, Meneghetti F, Riganti L, Vistolia G, Valotia E (2006) Synthesis and a4b2 nicotinic affinity of unichiral 5-(2-pyrrolidinyl)oxazolidinones and 2-(2-pyrrolidinyl)benzodioxanes. Bioorg Med Chem Lett 16:5610–5615

    Article  PubMed  CAS  Google Scholar 

  • Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  PubMed  CAS  Google Scholar 

  • Perez RG, Soriano S, Hayes JD, Ostaszewski B, Xia W, Selkoe DJ, Chen X, Stokin GB, Koo EH (1999) Mutagenesis identifies new signals for beta-amyloid precursor protein endocytosis, turnover, and the generation of secreted fragments, including Abeta42. J Biol Chem 274:18851–18856

    Article  PubMed  CAS  Google Scholar 

  • Perry DC, Xiao Y, Nguyen HN, Musachio JL, Davila-Garcia MI, Kellar KJ (2002) Measuring nicotinic receptors with characteristics of alpha4beta2, alpha3beta2 and alpha3beta4 subtypes in rat tissues by autoradiography. J Neurochem 82:468–481

    Article  PubMed  CAS  Google Scholar 

  • Qi XL, Nordberg A, Xiu J, Guan ZZ (2007) The consequences of reducing expression of the a7 nicotinic receptor by RNA interference and of stimulating its activity with an a7 agonist in SH-SY5Y cells indicate that this receptor plays a neuroprotective role in connection with the pathogenesis of Alzheimer’s disease. Neurochem Int. www.elsevier.com/locate/neuint

  • Sadowski M, Pankiewicz J, Scholtzova H, Ji Y, Quartermain D, Jensen CH, Duff K, Nixon RA, Gruen RJ, Wisniewski T (2004) Amyloid-beta deposition is associated with decreased hippocampal glucose metabolism and spatial memory impairment in APP/PS1 mice. J Neuropathol Exp Neurol 63: 418– 428

    PubMed  CAS  Google Scholar 

  • Selkoe DJ (1994) Amyloid beta-protein Precursor: new clues to the genesis of Alzheimer’s disease. Curr Opin Neurobiol 4:708–716

    Article  PubMed  CAS  Google Scholar 

  • Sommer B (2002) Alzheimer’s disease and the amyloid cascade hypothesis: ten years on. Curr Opin Pharmacol 2:87–92

    Article  PubMed  CAS  Google Scholar 

  • Tribollet E, Bertrand D, Marguerat A, Raggenbass M (2004) Comparative distribution of nicotinic receptor subtypes during development, adulthood and aging: an autoradiographic study in the rat brain. Neuroscience 124:405–420

    Article  PubMed  CAS  Google Scholar 

  • Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G (2000) The cause of neuronal degeneration in Alzheimer’s disease. Prog Neurobiol 60:139–165

    Article  PubMed  CAS  Google Scholar 

  • Weihl CC, Ghadge GD, Kennedy SG, Hay N, Miller RJ, Roos RP (1999) Mutant presenilin-1 induces apoptosis and downregulates Akt/PKB. J Neurosci 19:5360–5369

    PubMed  CAS  Google Scholar 

  • Wevers A, Schroder H (1999) Nicotinic acetylcholine receptors in Alzheimer’s disease. J Alzheimers Dis 1:207–219

    PubMed  CAS  Google Scholar 

  • Yang LB, Lindholm K, Yan R, Citron M, Xia W, Yang XL, Beach T, Sue L, Wong P, Price D (2003) Elevated beta-secretase expression and enzymatic activity detected in sporadic Alzheimer disease. Nat Med 9:3–4

    Article  PubMed  CAS  Google Scholar 

  • Zoli M, Moretti M, Zanardi A, McIntosh JM, Clementi F, Gotti C (2002) Identification of the nicotinic receptor subtypes expressed on dopaminergic terminals in the rat striatum. J Neurosci 22:8785–8789

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of the National Natural Science Foundation of China (30572179) is gratefully acknowledged. We thank Dr. Lennart Mucke for hAPP695 gene.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, H., Li, Z., Lukas, R.J. et al. Construction of SH-EP1-α4β2-hAPP695 Cell Line and Effects of Nicotinic Agonists on β-amyloid in the Cells. Cell Mol Neurobiol 28, 103–112 (2008). https://doi.org/10.1007/s10571-007-9218-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-007-9218-1

Keywords

Navigation