Skip to main content
Log in

Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice

  • Published:
Journal of Pharmacokinetics and Pharmacodynamics Aims and scope Submit manuscript

Abstract

Although it is known that FcRn, the neonatal Fc-receptor, functions to protect immune gamma globulin (IgG) from elimination, the influence of FcRn on the tissue distribution of IgG has not been quantified. In the present work, a physiologically-based pharmacokinetic (PBPK) model has been developed to characterize and predict IgG disposition in plasma and in tissues. The model includes nine major compartments, connected in an anatomical manner, to represent tissues known to play a significant role in IgG disposition. Each tissue compartment was subdivided into vascular, endosomal and interstitial spaces. IgG transport between the blood and interstitial compartments may proceed by convection through paracellular pores in the vascular endothelium, or via FcRn-mediated transcytosis across vascular endosomal cells. The model was utilized to characterize plasma concentration-time data for 7E3, a monoclonal antiplatelet IgG1 antibody, in control and FcRn-knockout (KO) mice. These data showed that high dose intravenous immunoglobulin (IVIG), 1g/kg, increased 7E3 clearance in control mice from 5.2 ± 0.3 to 14.4 ± 1.4 ml/d/kg; however, IVIG failed to increase the clearance of 7E3 in KO mice (72.5 ± 4.0 vs. 61.0 ± 3.6 ml/d/kg). Based on model fitting to the 7E3 plasma concentration data, simulations were conducted to predict tissue concentrations of IgG in control and in KO mice, and the predictions were then tested by assessing 7E3 tissue distribution in KO mice and control mice. 7E3 was radiolabeled with Iodine-125 using chloramine T method, and 125I-7E3 IgG was administered at a dose of 8 mg/kg to control and KO mice. At various time points, sub-groups of 3 mice were sacrificed, blood and tissue samples were collected, and radioactivity assessed by gamma counting. PBPK model performance was assessed by comparing model predictions with the observed data. The model accurately predicted 7E3 tissue concentrations, with mean predicted vs. observed AUC ratios of 1.04 ± 0.2 and 0.86 ± 0.3 in control and FcRn-KO mice. The PBPK model, which incorporates the influence of FcRn on IgG clearance and disposition, was found to provide accurate predictions of IgG tissue kinetics in control and FcRn-knockout mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Reichert J and Pavolu A (2004). Monoclonal antibodies market. Nat Rev Drug Discov 3: 383–384

    Article  PubMed  CAS  Google Scholar 

  • Paul WE (2003). Fundamental immunology. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Waldmann TA and Strober W (1969). Metabolism of immunoglobulins. Prog Allergy 13: 1–110

    PubMed  CAS  Google Scholar 

  • Brambell FW, Hemmings WA and Morris IG (1964). A Theoretical Model of Gamma-Globulin Catabolism. Nature 203: 1352–1354

    Article  PubMed  CAS  Google Scholar 

  • Jones EA and Waldmann TA (1972). The mechanism of intestinal uptake and transcellular transport of IgG in the neonatal rat. J Clin Invest 51: 2916–2927

    PubMed  CAS  Google Scholar 

  • Rodewald R (1973). Intestinal transport of antibodies in the newborn rat. J Cell Biol 58: 189–211

    Article  PubMed  CAS  Google Scholar 

  • Raghavan M and Bjorkman PJ (1996). Fc receptors and their interactions with immunoglobulins. Annu Rev Cell Dev Biol 12: 181–220

    Article  PubMed  CAS  Google Scholar 

  • Rodewald R (1976). pH-dependent binding of immunoglobulins to intestinal cells of the neonatal rat. J Cell Biol 71: 666–669

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y and Ward ES (1996). Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol 26: 690–696

    Article  PubMed  CAS  Google Scholar 

  • Israel EJ, Wilsker DF, Hayes KC, Schoenfeld D and Simister NE (1996). Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89: 573–578

    Article  PubMed  CAS  Google Scholar 

  • Junghans RP and Anderson CL (1996). The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci USA 93: 5512–5516

    Article  PubMed  CAS  Google Scholar 

  • Dall’ Acqua WF, Woods RM, Ward ES, Palaszynski SR, Patel NK, Brewah YA, Wu H, Kiener PA and Langermann S (2002). Increasing the affinity of a human IgG1 for the neonatal Fc receptor: biological consequences. J Immunol 169: 5171–5180

    Google Scholar 

  • Ghetie V, Popov S, Borvak J, Radu C, Matesoi D, Medesan C, Ober RJ and Ward ES (1997). Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat Biotechnol 15: 637–640

    Article  PubMed  CAS  Google Scholar 

  • Borvak J, Richardson J, Medesan C, Antohe F, Radu C, Simionescu M, Ghetie V and Ward ES (1998). Functional expression of the MHC class I-related receptor, FcRn, in endothelial cells of mice. Int Immunol 10: 1289–1298

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V and Ward ES (1997). FcRn: the MHC class I-related receptor that is more than an IgG transporter. Immunol Today 18: 592–598

    Article  PubMed  CAS  Google Scholar 

  • Israel EJ, Taylor S, Wu Z, Mizoguchi E, Blumberg RS, Bhan A and Simister NE (1997). Expression of the neonatal Fc receptor, FcRn, on human intestinal epithelial cells. Immunology 92: 69–74

    Article  PubMed  CAS  Google Scholar 

  • Baxter LT, Zhu H, Mackensen DG and Jain RK (1994). Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice. Cancer Res 54: 1517–1528

    PubMed  CAS  Google Scholar 

  • Dickinson BL, Badizadegan K, Wu Z, Ahouse JC, Zhu X, Simister NE, Blumberg RS and Lencer WI (1999). Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J Clin Invest 104: 903–911

    PubMed  CAS  Google Scholar 

  • Lobo ED, Hansen RJ and Balthasar JP (2004). Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 93: 2645–2668

    Article  PubMed  CAS  Google Scholar 

  • Tang L, Persky AM, Hochhaus G and Meibohm B (2004). Pharmacokinetic aspects of biotechnology products. J Pharm Sci 93: 2184–2204

    Article  PubMed  CAS  Google Scholar 

  • Covell DG, Barbet J, Holton OD, Black CD, Parker RJ and Weinstein JN (1986). Pharmacokinetics of monoclonal immunoglobulin G1, F(ab’)2, and Fab’ in mice. Cancer Res 46: 3969–3978

    PubMed  CAS  Google Scholar 

  • Baxter LT, Zhu H, Mackensen DG, Butler WF and Jain RK (1995). Biodistribution of monoclonal antibodies: scale-up from mouse to human using a physiologically based pharmacokinetic model. Cancer Res 55: 4611–4622

    PubMed  CAS  Google Scholar 

  • Friedrich SW, Lin SC, Stoll BR, Baxter LT, Munn LL and Jain RK (2002). Antibody-directed effector cell therapy of tumors: analysis and optimization using a physiologically based pharmacokinetic model. Neoplasia 4: 449–463

    Article  PubMed  CAS  Google Scholar 

  • Ismail M, Abd-Elsalam MA and Al-Ahaidib MS (1998). Pharmacokinetics of 125I-labelled Walterinnesia aegyptia venom and its distribution of the venom and its toxin versus slow absorption and distribution of IGG, F(AB’)2 and F(AB) of the antivenin. Toxicon 36: 93–114

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Baxter LT and Jain RK (1997). Potential and limitations of radioimmunodetection and radioimmunotherapy with monoclonal antibodies. J Nucl Med 38: 731–741

    PubMed  CAS  Google Scholar 

  • Zhu H, Melder RJ, Baxter LT and Jain RK (1996). Physiologically based kinetic model of effector cell biodistribution in mammals: implications for adoptive immunotherapy. Cancer Res 56: 3771–3781

    PubMed  CAS  Google Scholar 

  • Varner JA, Nakada MT, Jordan RE and Coller BS (1999). Inhibition of angiogenesis and tumor growth by murine 7E3, the parent antibody of c7E3 Fab (abciximab; ReoPro). Angiogenesis 3: 53–60

    Article  PubMed  CAS  Google Scholar 

  • Jensenius JC and Williams AF (1974). The binding of anti-immunoglobulin antibodies to rat thymocytes and thoracic duct lymphocytes. Eur J Immunol 4: 91–97

    Article  PubMed  CAS  Google Scholar 

  • Hansen RJ and Balthasar JP (2002). Intravenous immunoglobulin mediates an increase in anti-platelet antibody clearance via the FcRn receptor. [see comment]. Thromb Haemost 88: 898–899

    PubMed  CAS  Google Scholar 

  • Bailer AJ (1998). Testing for the equality of area under the curves when using destructive measurement techniques. J Pharmacokinet Biopharm 16: 303–309

    Article  Google Scholar 

  • Nedelman JR, Gibiansky E and Lau DT (1995). Applying Bailer’s method for AUC confidence intervals to sparse sampling. Pharm Res 12: 124–128

    Article  PubMed  CAS  Google Scholar 

  • Motulsky H (1995). Intuitive biostatistics. Oxford University Press, New York

    Google Scholar 

  • Antohe F, Radulescu L, Gafencu A, Ghetie V and Simionescu M (2001). Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum Immunol 62: 93–105

    Article  PubMed  CAS  Google Scholar 

  • McCarthy KM, Lam M, Subramanian L, Shakya R, Wu Z, Newton EE and Simister NE (2001). Effects of mutations in potential phosphorylation sites on transcytosis of FcRn. J Cell Sci 114: 1591–1598

    PubMed  CAS  Google Scholar 

  • Praetor A, Ellinger I and Hunziker W (1999). Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J Cell Sci 112(Pt 14): 2291–2299

    PubMed  CAS  Google Scholar 

  • Rojas R and Apodaca G (2002). Immunoglobulin transport across polarized epithelial cells. Nat Rev Mol Cell Biol 3: 944–955

    Article  PubMed  CAS  Google Scholar 

  • Raghavan M, Chen MY, Gastinel LN and Bjorkman PJ (1994). Investigation of the interaction between the class I MHC-related Fc receptor and its immunoglobulin G ligand. Immunity 1: 303–315

    Article  PubMed  CAS  Google Scholar 

  • Ward ES, Zhou J, Ghetie V and Ober RJ (2003). Evidence to support the cellular mechanism involved in serum IgG homeostasis in humans. Int Immunol 15: 187–195

    Article  PubMed  CAS  Google Scholar 

  • Ghetie V and Ward ES (2002). Transcytosis and catabolism of antibody. Immunol Res 25: 97–113

    Article  PubMed  CAS  Google Scholar 

  • Flessner MF, Lofthouse J and Zakaria ER (1997). In vivo diffusion of immunoglobulin G in muscle: effects of binding, solute exclusion, and lymphatic removal. Am J Physiol 273: H2783–2793

    PubMed  CAS  Google Scholar 

  • Hansen RJ and Balthasar JP (2003). Pharmacokinetic/pharmacodynamic modeling of the effects of intravenous immunoglobulin on the disposition of antiplatelet antibodies in a rat model of immune thrombocytopenia. J Pharm Sci 92: 1206–1215

    Article  PubMed  CAS  Google Scholar 

  • Brown RP, Delp MD, Lindstedt SL, Rhomberg LR and Beliles RP (1997). Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health 13: 407–484

    PubMed  CAS  Google Scholar 

  • Gerlowski LE and Jain RK (1983). Physiologically based pharmacokinetic modeling: principles and applications. J Pharm Sci 72: 1103–1127

    Article  PubMed  CAS  Google Scholar 

  • Hahnfeldt P, Panigrahy D, Folkman J and Hlatky L (1999). Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59: 4770–4775

    PubMed  CAS  Google Scholar 

  • Predescu D and Palade GE (1993). Plasmalemmal vesicles represent the large pore system of continuous microvascular endothelium. Am J Physiol 265: H725–733

    PubMed  CAS  Google Scholar 

  • Zhou J, Johnson JE, Ghetie V, Ober RJ and Sally Ward E (2003). Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J Mol Biol 332: 901–913

    Article  PubMed  CAS  Google Scholar 

  • Hamby DM (1995). A comparison of sensitivity analysis techniques. Health Phys 68: 195–204

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio DZ and Schumitzky A (1997). ADAPT II User’s Guide: Pharmacokinetic/Pharmacodynamic systems analysis software. Biomedical Simulation Resource, Los Angeles

    Google Scholar 

  • Ober RJ, Radu CG, Ghetie V and Ward ES (2001). Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int Immunol 13: 1551–1559

    Article  PubMed  CAS  Google Scholar 

  • Braeckman R (2000). Pharmacokinetics and pharmacodynamics of protein therapeutics. In: Reid, R (eds) Peptide and protein drug analysis, pp 633–669. Marcel Dekker, New York, NY

    Google Scholar 

  • Henderson LA, Baynes JW and Thorpe SR (1982). Identification of the sites of IgG catabolism in the rat. Arch Biochem Biophys 215: 1–11

    Article  PubMed  CAS  Google Scholar 

  • Wright A, Sato Y, Okada T, Chang K, Endo T and Morrison S (2000). In vivo trafficking and catabolism of IgG1 antibodies with Fc associated carbohydrates of differing structure. Glycobiology 10: 1347–1355

    Article  PubMed  CAS  Google Scholar 

  • Ferl GZ, Kenanova V, Wu AM and DiStefano JJ III (2006). A two-tiered physiologically based model for dually labeled single-chain Fv-Fc antibody fragments. Mol Cancer Ther 5: 1550–1558

    Article  PubMed  CAS  Google Scholar 

  • Ferl GZ, Wu AM and DiStefano JJ III (2005). A predictive model of therapeutic monoclonal antibody dynamics and regulation by the neonatal Fc receptor (FcRn). Ann Biomed Eng 33: 1640–1652

    Article  PubMed  Google Scholar 

  • Blumberg RS, Koss T, Story CM, Barisani D, Polischuk J, Lipin A, Pablo L, Green R and Simister NE (1995). A major histocompatibility complex class I-related Fc receptor for IgG on rat hepatocytes. J Clin Invest 95: 2397–2402

    Article  PubMed  CAS  Google Scholar 

  • Spiekermann GM, Finn PW, Ward ES, Dumont J, Dickinson BL, Blumberg RS and Lencer WI (2002). Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. [erratum appears in J Exp Med. 2003 Jun 2;197(11):1601]. J Exp Med 196: 303–310

    Article  PubMed  CAS  Google Scholar 

  • Haymann JP, Levraud JP, Bouet S, Kappes V, Hagege J, Nguyen G, Xu Y, Rondeau E and Sraer JD (2000). Characterization and localization of the neonatal Fc receptor in adult human kidney. J Am Soc Nephrol 11: 632–639

    PubMed  CAS  Google Scholar 

  • Kobayashi N, Suzuki Y, Tsuge T, Okumura K, Ra C and Tomino Y (2002). FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am J Physiol Renal Physiol 282: F358–365

    PubMed  Google Scholar 

  • McFarlane AS (1963). Catabolism of plasma proteins. Lancet 1: 131–132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph P. Balthasar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garg, A., Balthasar, J.P. Physiologically-based pharmacokinetic (PBPK) model to predict IgG tissue kinetics in wild-type and FcRn-knockout mice. J Pharmacokinet Pharmacodyn 34, 687–709 (2007). https://doi.org/10.1007/s10928-007-9065-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10928-007-9065-1

Keywords

Navigation