Skip to main content
Log in

Angiotensin metabolites can stimulate receptors of the Mas-related genes family

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The Mas protooncogene encodes a G protein-coupled receptor, we identified, also by using the specific angiotensin-(1-7) antagonist A-779, to be associated with intracellular signaling of the angiotensin (Ang) II metabolite Ang-(1-7). Recently, Mas-related genes (Mrg) have been identified coding for the Mrg-receptor family. All family members share high sequence homology to Mas. Most of them are orphan receptors. To proof whether structure similarities of the Mrg receptors with Mas turn them into potential receptors for Ang-(1-7) or other Ang metabolites, we transfected COS or HEK293 cells with an assortment of Mrg receptors and investigated arachidonic acid (AA) release and transcriptional activation by recording serum response factor (SRF) activation after stimulation with Ang II, Ang III, Ang IV, and Ang-(1-7). None of the investigated receptors activated transcription via SRF. Ang-(1-7) stimulated AA release already in control vector-transfected COS cells, indicating the existence of an endogenous receptor (A-779 sensitive). Though less pronounced than for Mas, two of the six studied receptors (MrgD, MRG) initiated significant AA release after stimulation with Ang-(1-7). Interestingly, Mas, MrgD, and MRG mediated Ang IV-stimulated AA release that was highest for Mas. While Ang III activated Mas and MrgX2, Ang II stimulated AA release via Mas and MRG. Thus, we identified other receptors of the Mrg family to respond on Ang-(1-7) stimulation. Furthermore, we describe first an AT1-independent direct Ang IV signaling and show that Ang II and Ang III mediate signaling independent of their specific receptors AT1 and AT2, whereby the receptor specificity differs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Young D, Waitches G, Birchmeier C et al (1986) Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 45:711–719. doi:10.1016/0092-8674(86)90785-3

    Article  PubMed  CAS  Google Scholar 

  2. Jackson TR, Blair LA, Marshall J et al (1988) The mas oncogene encodes an angiotensin receptor. Nature 335:437–440. doi:10.1038/335437a0

    Article  PubMed  CAS  Google Scholar 

  3. Kostenis E, Milligan G, Christopoulos A et al (2005) G-protein-coupled receptor Mas is a physiological antagonist of the angiotensin II type 1 receptor. Circulation 111:1806–1813. doi:10.1161/01.CIR.0000160867.23556.7D

    Article  PubMed  CAS  Google Scholar 

  4. Welches WR, Brosnihan KB, Ferrario CM (1993) A comparison of the properties and enzymatic activities of three angiotensin processing enzymes: angiotensin converting enzyme, prolyl endopeptidase and neutral endopeptidase 24.11. Life Sci 52:1461–1480. doi:10.1016/0024-3205(93)90108-F

    Article  PubMed  CAS  Google Scholar 

  5. Donoghue M, Hsieh F, Baronas E et al (2000) A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 87:E1–E9

    PubMed  CAS  Google Scholar 

  6. Tipnis SR, Hooper NM, Hyde R et al (2000) A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase. J Biol Chem 275:33238–33243. doi:10.1074/jbc.M002615200

    Article  PubMed  CAS  Google Scholar 

  7. Santos RAS, e Silva ACS, Maric C et al (2003) Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc Natl Acad Sci 100:8258–8263

    Article  PubMed  CAS  Google Scholar 

  8. Ferrario CM, Jessup J, Gallagher PE et al (2005) Effects of renin-angiotensin system blockade on renal angiotensin-(1-7) forming enzymes and receptors. Kidney Int 68:2189–2196. doi:10.1111/j.1523-1755.2005.00675.x

    Article  PubMed  CAS  Google Scholar 

  9. Iwata M, Cowling RT, Gurantz D et al (2005) Angiotensin-(1-7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. Am J Physiol Heart Circ Physiol 289:H2356–H2363. doi:10.1152/ajpheart.00317.2005

    Article  PubMed  CAS  Google Scholar 

  10. Sampaio WO, Henrique de Castro C, Santos RA et al (2007) Angiotensin-(1-7) counterregulates angiotensin II signaling in human endothelial cells. Hypertension 50:1093–1098. doi:10.1161/HYPERTENSIONAHA.106.084848

    Article  PubMed  CAS  Google Scholar 

  11. Tallant EA, Ferrario CM, Gallagher PE (2005) Angiotensin-(1-7) inhibits growth of cardiac myocytes through activation of the mas receptor. Am J Physiol Heart Circ Physiol 289:H1560–H1566. doi:10.1152/ajpheart.00941.2004

    Article  PubMed  CAS  Google Scholar 

  12. Machado RD, Santos RA, Andrade SP (2000) Opposing actions of angiotensins on angiogenesis. Life Sci 66:67–76. doi:10.1016/S0024-3205(99)00562-7

    Article  PubMed  CAS  Google Scholar 

  13. Lembo PM, Grazzini E, Groblewski T et al (2002) Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 5:201–209. doi:10.1038/nn815

    Article  PubMed  CAS  Google Scholar 

  14. Dong X, Han S, Zylka MJ et al (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632. doi:10.1016/S0092-8674(01)00483-4

    Article  PubMed  CAS  Google Scholar 

  15. Han SK, Dong X, Hwang JI et al (2002) Orphan G protein-coupled receptors MrgA1 and MrgC11 are distinctively activated by RF-amide-related peptides through the Galpha q/11 pathway. Proc Natl Acad Sci USA 99:14740–14745. doi:10.1073/pnas.192565799

    Article  PubMed  CAS  Google Scholar 

  16. Ross PC, Figler RA, Corjay MH et al (1990) RTA, a candidate G protein-coupled receptor: cloning, sequencing, and tissue distribution. Proc Natl Acad Sci USA 87:3052–3056. doi:10.1073/pnas.87.8.3052

    Article  PubMed  CAS  Google Scholar 

  17. Wittenberger T, Schaller HC, Hellebrand S (2001) An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol 307:799–813. doi:10.1006/jmbi.2001.4520

    Article  PubMed  CAS  Google Scholar 

  18. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  19. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed  CAS  Google Scholar 

  20. Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182. doi:10.1016/0092-8674(81)90282-8

    Article  PubMed  CAS  Google Scholar 

  21. Gorman CM, Moffat LF, Howard BH (1982) Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1051

    PubMed  CAS  Google Scholar 

  22. Lokuta AJ, Cooper C, Gaa ST et al (1994) Angiotensin II stimulates the release of phospholipid-derived second messengers through multiple receptor subtypes in heart cells. J Biol Chem 269:4832–4838

    PubMed  CAS  Google Scholar 

  23. de Gasparo M, Catt KJ, Inagami T et al (2000) International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52:415–472

    PubMed  Google Scholar 

  24. Gassanov N, Brandt MC, Michels G et al (2006) Angiotensin II-induced changes of calcium sparks and ionic currents in human atrial myocytes: potential role for early remodeling in atrial fibrillation. Cell Calcium 39:175–186. doi:10.1016/j.ceca.2005.10.008

    Article  PubMed  CAS  Google Scholar 

  25. Wesselman JP, De Mey JG (2002) Angiotensin and cytoskeletal proteins: role in vascular remodeling. Curr Hypertens Rep 4:63–70. doi:10.1007/s11906-002-0055-9

    Article  PubMed  Google Scholar 

  26. Otis M, Campbell S, Payet MD et al (2007) The growth-promoting effects of angiotensin II in adrenal glomerulosa cells: an interactive tale. Mol Cell Endocrinol 273:1–5. doi:10.1016/j.mce.2007.05.006

    Article  PubMed  CAS  Google Scholar 

  27. Xu X, Ha CH, Wong C et al (2007) Angiotensin II stimulates protein kinase D-dependent histone deacetylase 5 phosphorylation and nuclear export leading to vascular smooth muscle cell hypertrophy. Arterioscler Thromb Vasc Biol 27:2355–2362. doi:10.1161/ATVBAHA.107.151704

    Article  PubMed  CAS  Google Scholar 

  28. Brasier AR, Jamaluddin M, Han Y et al (2000) Angiotensin II induces gene transcription through cell-type-dependent effects on the nuclear factor-kappaB (NF-kappaB) transcription factor. Mol Cell Biochem 212:155–169. doi:10.1023/A:1007133710837

    Article  PubMed  CAS  Google Scholar 

  29. Miano JM, Long X, Fujiwara K (2007) Serum response factor: master regulator of the actin cytoskeleton and contractile apparatus. Am J Physiol Cell Physiol 292:C70–C81. doi:10.1152/ajpcell.00386.2006

    Article  PubMed  CAS  Google Scholar 

  30. Burnier M, Brunner HR (2000) Angiotensin II receptor antagonists. Lancet 355:637–645. doi:10.1016/S0140-6736(99)10365-9

    Article  PubMed  CAS  Google Scholar 

  31. Kim S, Iwao H (2000) Molecular and cellular mechanisms of angiotensin II-mediated cardiovascular and renal diseases. Pharmacol Rev 52:11–34

    PubMed  CAS  Google Scholar 

  32. Ardaillou R (1997) Active fragments of angiotensin II: enzymatic pathways of synthesis and biological effects. Curr Opin Nephrol Hypertens 6:28–34. doi:10.1097/00041552-199701000-00006

    Article  PubMed  CAS  Google Scholar 

  33. Ferrario CM, Chappell MC (2004) Novel angiotensin peptides. Cell Mol Life Sci 61:2720–2727. doi:10.1007/s00018-004-4243-4

    Article  PubMed  CAS  Google Scholar 

  34. Suzuki Y, Ruiz-Ortega M, Lorenzo O et al (2003) Inflammation and angiotensin II. Int J Biochem Cell Biol 35:881–900. doi:10.1016/S1357-2725(02)00271-6

    Article  PubMed  CAS  Google Scholar 

  35. Godeny MD, Sayeski PP (2006) ERK1/2 regulates ANG II-dependent cell proliferation via cytoplasmic activation of RSK2 and nuclear activation of elk1. Am J Physiol Cell Physiol 291:C1308–C1317. doi:10.1152/ajpcell.00618.2005

    Article  PubMed  CAS  Google Scholar 

  36. Trask AJ, Ferrario CM (2007) Angiotensin-(1-7): pharmacology and new perspectives in cardiovascular treatments. Cardiovasc Drug Rev 25:162–174. doi:10.1111/j.1527-3466.2007.00012.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the ‘Sonnenfeld Stiftung’. FG was paid by a grant from ‘Deutsche Forschungsgemeinschaft’ (DFG; GRK865).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Walther.

Additional information

Florian Gembardt and Sonja Grajewski contributed equally to the work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gembardt, F., Grajewski, S., Vahl, M. et al. Angiotensin metabolites can stimulate receptors of the Mas-related genes family. Mol Cell Biochem 319, 115–123 (2008). https://doi.org/10.1007/s11010-008-9884-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-008-9884-4

Keywords

Navigation