Skip to main content

Advertisement

Log in

The G protein-coupled oestrogen receptor 1 agonist G-1 disrupts endothelial cell microtubule structure in a receptor-independent manner

Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

The G protein-coupled oestrogen receptor GPER1, also known as GPR30, has been implicated in oestrogen signalling, but the physiological importance of GPER1 is not fully understood. The GPER1 agonist G-1 has become an important tool to assess GPER1-mediated cellular effects. Here, we report that this substance, besides acting via GPER1, affects the microtubule network in endothelial cells. Treatment with G-1 (3 μM) for 24 h reduced DNA synthesis by about 60 % in mouse microvascular endothelial bEnd.3 cells. Treatment with 3 μM G-1 prevented outgrowth of primary endothelial cells from mouse aortic explants embedded in Matrigel. Treatment with G-1 (0.3–3 μM) for 24 h disrupted bEnd.3 cell and HUVEC microtubule structure in a concentration-dependent manner as assessed by laser-scanning confocal immunofluorescence microscopy. G-1-induced (3 μM) disruption of microtubule was observed also after acute (3 and 6 h) treatment and in the presence of the protein synthesis inhibitor cycloheximide. Disruption of microtubules by 3 μM G-1 was observed in aortic smooth muscle cells obtained from both GPER1 knockout and wild-type mice, suggesting that G-1 influences microtubules through a mechanism independent of GPER1. G-1 dose dependently (10–50 μM) stimulated microtubule assembly in vitro. On the other hand, microtubules appeared normal in the presence of 10–50 μM G-1 as determined by electron microscopy. We suggest that G-1-promoted endothelial cell anti-proliferation is due in part to alteration of microtubule organization through a mechanism independent of GPER1. This G-1-promoted mechanism may be used to block unwanted endothelial cell proliferation and angiogenesis such as that observed in, e.g. cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Green S, Walter P, Kumar V, Krust A, Bornert JM, Argos P, Chambon P (1986) Human oestrogen receptor cDNA: sequence, expression and homology to v-erb-A. Nature 320:134–139

    Article  PubMed  CAS  Google Scholar 

  2. Greene GL, Gilna P, Waterfield M, Baker A, Hort Y, Shine J (1986) Sequence and expression of human estrogen receptor complementary DNA. Science 231:1150–1154

    Article  PubMed  CAS  Google Scholar 

  3. Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930

    Article  PubMed  CAS  Google Scholar 

  4. Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER (2005) A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 307:1625–1630

    Article  PubMed  CAS  Google Scholar 

  5. Thomas P, Pang Y, Filardo EJ, Dong J (2005) Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 146:624–632

    Article  PubMed  CAS  Google Scholar 

  6. Owman C, Blay P, Nilsson C, Lolait SJ (1996) Cloning of human cDNA encoding a novel heptahelix receptor expressed in Burkitt’s lymphoma and widely distributed in brain and peripheral tissues. Biochem Biophys Res Commun 228:285–292

    Article  PubMed  CAS  Google Scholar 

  7. Nilsson S, Makela S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (2001) Mechanisms of estrogen action. Physiol Rev 81:1535–1565

    PubMed  CAS  Google Scholar 

  8. Isensee J, Meoli L, Zazzu V, Nabzdyk C, Witt H, Soewarto D, Effertz K, Fuchs H, Gailus-Durner V, Busch D, Adler T, de Angelis MH, Irgang M, Otto C, Noppinger PR (2009) Expression pattern of Gpr30 in LacZ reporter mice. Endocrinology 150:1722–1730

    Article  PubMed  CAS  Google Scholar 

  9. Martensson UE, Salehi SA, Windahl S, Gomez MF, Sward K, Daszkiewicz-Nilsson J, Wendt A, Andersson N, Hellstrand P, Grande PO, Owman C, Rosen CJ, Adamo ML, Lundquist I, Rorsman P, Nilsson BO, Ohlsson C, Olde B, Leeb-Lundberg LM (2009) Deletion of the G protein-coupled receptor 30 impairs glucose tolerance, reduces bone growth, increases blood pressure, and eliminates estradiol-stimulated insulin release in female mice. Endocrinology 150:687–698

    Article  PubMed  Google Scholar 

  10. Otto C, Fuchs I, Kauselmann G, Kern H, Zevnik B, Andreasen P, Schwarz G, Altmann H, Klewer M, Schoor M, Vonk R, Fritzemeier KH (2009) GPR30 does not mediate estrogenic responses in reproductive organs in mice. Biol Reprod 80:34–41

    Article  PubMed  CAS  Google Scholar 

  11. Olde B, Leeb-Lundberg LM (2009) GPR30/GPER1: searching for a role in estrogen physiology. Trends Endocrinol Metab 20:409–416

    Article  PubMed  CAS  Google Scholar 

  12. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW (1999) Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 103:401–406

    Article  PubMed  CAS  Google Scholar 

  13. Darblade B, Pendaries C, Krust A, Dupont S, Fouque MJ, Rami J, Chambon P, Bayard F, Arnal JF (2002) Estradiol alters nitric oxide production in the mouse aorta through the alpha-, but not beta-, estrogen receptor. Circ Res 90:413–419

    Article  PubMed  CAS  Google Scholar 

  14. Pare G, Krust A, Karas RH, Dupont S, Aronovitz M, Chambon P, Mendelsohn ME (2002) Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury. Circ Res 90:1087–1092

    Article  PubMed  CAS  Google Scholar 

  15. Pendaries C, Darblade B, Rochaix P, Krust A, Chambon P, Korach KS, Bayard F, Arnal JF (2002) The AF-1 activation-function of ERalpha may be dispensable to mediate the effect of estradiol on endothelial NO production in mice. Proc Natl Acad Sci USA 99:2205–2210

    Article  PubMed  CAS  Google Scholar 

  16. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541

    Article  PubMed  CAS  Google Scholar 

  17. Nilsson BO (2007) Modulation of the inflammatory response by estrogens with focus on the endothelium and its interactions with leukocytes. Inflamm Res 56:269–273

    Article  PubMed  CAS  Google Scholar 

  18. Toutain CE, Filipe C, Billon A, Fontaine C, Brouchet L, Guery JC, Gourdy P, Arnal JF, Lenfant F (2009) Estrogen receptor alpha expression in both endothelium and hematopoietic cells is required for the accelerative effect of estradiol on reendothelialization. Arterioscler Thromb Vasc Biol 29:1543–1550

    Article  PubMed  CAS  Google Scholar 

  19. Haas E, Bhattacharya I, Brailoiu E, Damjanovic M, Brailoiu GC, Gao X, Mueller-Guerre L, Marjon NA, Gut A, Minotti R, Meyer MR, Amann K, Ammann E, Perez-Dominguez A, Genoni M, Clegg DJ, Dun NJ, Resta TC, Prossnitz ER, Barton M (2009) Regulatory role of G protein-coupled estrogen receptor for vascular function and obesity. Circ Res 104:288–291

    Article  PubMed  CAS  Google Scholar 

  20. Lindsey SH, Cohen JA, Brosnihan KB, Gallagher PE, Chappell MC (2009) Chronic treatment with the Gpr30 agonist G-1 decreases blood pressure in ovariectomized Mren2.Lewis rats. Endocrinology 150:3753–3758

    Article  PubMed  CAS  Google Scholar 

  21. Bologa CG, Revankar CM, Young SM, Edwards BS, Arterburn JB, Kiselyov AS, Parker MA, Tkachenko SE, Savchuck NP, Sklar LA, Oprea TI, Prossnitz ER (2006) Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol 2:207–212

    Article  PubMed  CAS  Google Scholar 

  22. Holm A, Baldetorp B, Olde B, Leeb-Lundberg LM, Nilsson BO (2011) The GPER1 agonist G-1 attenuates endothelial cell proliferation by inhibiting DNA synthesis and accumulating cells in the S and G2 phases of the cell cycle. J Vasc Res 48:327–335

    Article  PubMed  CAS  Google Scholar 

  23. Schwartz EL (2009) Antivascular actions of microtubule-binding drugs. Clin Cancer Res 15:2594–2601

    Article  PubMed  CAS  Google Scholar 

  24. Bevers LM, Braam B, Post JA, van Zonneveld AJ, Rabelink TJ, Koomans HS, Verhaar MC, Joles JA (2006) Tetrahydrobiopterin, but not l-arginine, decreases NO synthase uncoupling in cells expressing high levels of endothelial NO synthase. Hypertension 47:87–94

    Article  PubMed  CAS  Google Scholar 

  25. Odenlund M, Ekblad E, Nilsson BO (2008) Stimulation of oestrogen receptor-expressing endothelial cells with oestrogen reduces proliferation of cocultured vascular smooth muscle cells. Clin Exp Pharmacol Physiol 35:245–248

    Article  PubMed  CAS  Google Scholar 

  26. Andersson C, Lydrup ML, Ferno M, Idvall I, Gustafsson JA, Nilsson BO (2001) Immunocytochemical demonstration of oestrogen receptor β in blood vessels of the female rat. J Endocrinol 169:241–247

    Article  PubMed  CAS  Google Scholar 

  27. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  28. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  CAS  Google Scholar 

  29. Fellous A, Francon J, Lennon AM, Nunez J (1977) Microtubule assembly in vitro: purification of assembly-promoting factors. Eur J Biochem 78:167–174

    Article  PubMed  CAS  Google Scholar 

  30. Olmsted JB, Borisy GG (1973) Characterization of microtubule assembly in porcine brain extracts by viscometry. Biochemistry 12:4282–4289

    Article  PubMed  CAS  Google Scholar 

  31. Schachterle GR, Pollack RL (1973) A simplified method for the quantitative assay of small amounts of protein in biologic material. Anal Biochem 51:654–655

    Article  Google Scholar 

  32. Eilken HM, Adams RH (2010) Dynamics of endothelial cell behavior in sprouting angiogenesis. Curr Opin Cell Biol 22:617–625

    Article  PubMed  CAS  Google Scholar 

  33. Batonnet S, Leibovitch MP, Tintignac L, Leibovitch SA (2004) Critical role for lysine 133 in the nuclear ubiquitin-mediated degradation of MyoD. J Biol Chem 279:5413–5420

    Article  PubMed  CAS  Google Scholar 

  34. Wallin M, Deinum J, Fridén B (1985) Interaction of estramustine phosphate with microtubule-associated proteins. FEBS Lett 179:289–293

    Article  PubMed  CAS  Google Scholar 

  35. Dhamodharan R, Jordan MA, Thrower D, Wilson L, Wadsworth P (1995) Vinblastine suppresses dynamics of individual microtubules in living interphase cells. Mol Biol Cell 6:1215–1229

    PubMed  CAS  Google Scholar 

  36. Kreis T, Vale R (1999) Guidebook to the cytoskeletal and motor proteins. Oxford University Press, Oxford

    Google Scholar 

  37. Teng J, Wang ZY, Prossnitz ER, Bjorling DE (2008) The G protein-coupled receptor GPR30 inhibits human urothelial cell proliferation. Endocrinology 149:4024–4034

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Swedish Research Council, the Swedish Dental Society, the Greta and Johan Kocks Foundation, the Sven and Lilly Thuréus Foundation and the Vascular Wall Programme at Lund University. We thank Dr. Mary Ann Jordan of the University of California at Santa Barbara for her thoughtful advice. Supported in part by a grant to RFL from the United States Department of Defence Breast Cancer Research Program W81XWH-10-1-0903. RFL and VP gratefully acknowledge the support of the Cancer Therapy and Research Center at the University of Texas Health Science Center San Antonio, an NCI-designated Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bengt-Olof Nilsson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, A., Grände, PO., Ludueña, R.F. et al. The G protein-coupled oestrogen receptor 1 agonist G-1 disrupts endothelial cell microtubule structure in a receptor-independent manner. Mol Cell Biochem 366, 239–249 (2012). https://doi.org/10.1007/s11010-012-1301-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-012-1301-3

Keywords

Navigation