Skip to main content

Advertisement

Log in

The Adenosine A3 Receptor Agonist Cl-IB-MECA Induces Cell Death Through Ca2+/ROS-Dependent Down Regulation of ERK and Akt in A172 Human Glioma Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Adenosine A3 receptor (A3AR) is coupled to G proteins that are involved in a variety of intracellular signaling pathways and physiological functions. 2-Chloro-N 6-(3-iodobenzyl) adenosine-5′-N-methylcarboxamide (Cl-IB-MECA), an agonist of A3AR, has been reported to induce cell death in various cancer cells. However, the effect of CI-IB-MECA on glioma cell growth is not clear. This study was undertaken to examine the effect of CI-IB-MECA on glioma cell viability and to determine its molecular mechanism. CI-IB-MECA inhibited cell proliferation and induced cell death in a dose- and time-dependent manner. Treatment of CI-IB-MECA resulted in an increase in intracellular Ca2+ followed by enhanced reactive oxygen species (ROS) generation. EGTA and N-acetylcysteine (NAC) blocked the cell death induced by CI-IB-MECA, suggesting that Ca2+ and ROS are involved in the Cl-IB-MECA-induced cell death. Western blot analysis showed that CI-IB-MECA induced the down-regulation of extracellular signal-regulated kinases (ERK) and Akt, which was prevented by EGTA, NAC, and the A3AR antagonist MRS1191. Transfection of constitutively active forms of MEK, the upstream kinase of ERK, and Akt prevented the cell death. CI-IB-MECA induced caspase-3 activation and the CI-IB-MECA-induced cell death was blocked by the caspase inhibitors DEVD-CHO and z-VAD-FMK. In addition, expression of XIAP and Survivin were decreased in cells treated with Cl-IB-MECA. Collectively, these findings demonstrate that CI-IB-MECA induce a caspase-dependent cell death through suppression of ERK and Akt mediated by an increase in intracellular Ca2+ and ROS generation in human glioma cells. These suggest that A3AR agonists may be a potential therapeutic agent for induction of apoptosis in human glioma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170(5):1445–1453

    Article  PubMed  CAS  Google Scholar 

  2. Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60(3):166–193

    Article  PubMed  Google Scholar 

  3. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64(6):479–489

    PubMed  CAS  Google Scholar 

  4. Gessi S, Merighi S, Sacchetto V, Simioni C, Borea PA (1808) Adenosine receptors and cancer. Biochim Biophys Acta 1808(5):1400–1412

    Google Scholar 

  5. Panickar KS, Norenberg MD (2005) Astrocytes in cerebral ischemic injury: morphological and general considerations. Glia 50(4):287–298

    Article  PubMed  Google Scholar 

  6. Kamiya H, Kanno T, Fujita Y, Gotoh A, Nakano T, Nishizaki T (2012) Apoptosis-related gene transcription in human A549 lung cancer cells via A(3) adenosine receptor. Cell Physiol Biochem 29(5–6):687–696

    PubMed  CAS  Google Scholar 

  7. Boison D (2006) Adenosine kinase, epilepsy and stroke: mechanisms and therapies. Trends Pharmacol Sci 27(12):652–658

    Article  PubMed  CAS  Google Scholar 

  8. Madi LOA, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F, Fishman P (2004) The A3 adenosine receptor is highly expressed in tumor versus normal cells: potential target for tumor growth inhibition. Clin Cancer Res 10(13):4472–4479

    Article  PubMed  CAS  Google Scholar 

  9. Fishman P, Madi L, Bar-Yehuda S, Barer F, Del Valle L, Khalili K (2002) Evidence for involvement of Wnt signaling pathway in IB-MECA mediated suppression of melanoma cells. Oncogene 21(25):4060–4064

    Article  PubMed  CAS  Google Scholar 

  10. Kim SJ, Min HY, Chung HJ, Park EJ, Hong JY, Kang YJ, Shin DH, Jeong LS, Lee SK (2008) Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, in human lung cancer cells. Cancer Lett 264(2):309–315

    Article  PubMed  CAS  Google Scholar 

  11. Fishman P, Bar-Yehuda S, Ohana G, Barer F, Ochaion A, Erlanger A, Madi L (2004) An agonist to the A3 adenosine receptor inhibits colon carcinoma growth in mice via modulation of GSK-3 beta and NF-kappa B. Oncogene 23(14):2465–2471

    Article  PubMed  CAS  Google Scholar 

  12. Morello S, Petrella A, Festa M, Popolo A, Monaco M, Vuttariello E, Chiappetta G, Parente L, Pinto A (2008) Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther 7(2):278–284

    Article  PubMed  CAS  Google Scholar 

  13. Steelman LS, Chappell WH, Abrams SL, Kempf CR, Long J, Laidler P, Mijatovic S, Maksimovic-Ivanic D, Stivala F, Mazzarino MC, Donia M, Fagone P, Malaponte G, Nicoletti F, Libra M, Milella M, Tafuri A, Bonati A, Basecke J, Cocco L, Evangelisti C, Martelli AM, Montalto G, Cervello M, McCubrey JA (2011) Roles of the Raf/MEK/ERK and PI3 K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging-Us 3(3):192–222

    CAS  Google Scholar 

  14. Chappell WH, Steelman LS, Long JM, Kempf RC, Abrams SL, Franklin RA, Basecke J, Stivala F, Donia M, Fagone P, Malaponte G, Mazzarino MC, Nicoletti F, Libra M, Maksimovic-Ivanic D, Mijatovic S, Montalto G, Cervello M, Laidler P, Milella M, Tafuri A, Bonati A, Evangelisti C, Cocco L, Martelli AM, McCubrey JA (2011) Ras/Raf/MEK/ERK and PI3 K/PTEN/Akt/mTOR inhibitors: rationale and importance to inhibiting these pathways in human health. Oncotarget 2(3):135–164

    PubMed  Google Scholar 

  15. Fan YY, Sun CX, Gao XG, Wang F, Li XZ, Kassim RM, Tai GH, Zhou YF (2012) Neuroprotective effects of ginseng pectin through the activation of ERK/MAPK and Akt survival signaling pathways. Mol Med Rep 5(5):1185–1190

    CAS  Google Scholar 

  16. Lin SY, Lai WW, Ho CC, Yu FS, Chen GW, Yang JS, Liu KC, Lin ML, Wu PP, Fan MJ, Chung JG (2009) Emodin induces apoptosis of human tongue squamous cancer SCC-4 cells through reactive oxygen species and mitochondria-dependent pathways. Anticancer Res 29(1):327–335

    PubMed  CAS  Google Scholar 

  17. Baharav E, Bar-Yehuda S, Madi L, Silberman D, Rath-Wolfson L, Halpren M, Ochaion A, Weinberger A, Fishman P (2005) Antiinflammatory effect of A3 adenosine receptor agonists in murine autoimmune arthritis models. J Rheumatol 32(3):469–476

    PubMed  CAS  Google Scholar 

  18. Fishman P, Bar-Yehuda S, Madi L, Rath-Wolfson L, Ochaion A, Cohen S, Baharav E (2006) The PI3 K-NF-kappaB signal transduction pathway is involved in mediating the anti-inflammatory effect of IB-MECA in adjuvant-induced arthritis. Arthr Res Ther 8(1):R33

    Article  Google Scholar 

  19. Rath-Wolfson L, Bar-Yehuda S, Madi L, Ochaion A, Cohen S, Zabutti A, Fishman P (2006) IB-MECA, an A3 adenosine receptor agonist prevents bone resorption in rats with adjuvant induced arthritis. Clin Exp Rheumatol 24(4):400–406

    PubMed  CAS  Google Scholar 

  20. Ip SW, Chu YL, Yu CS, Chen PY, Ho HC, Yang JS, Huang HY, Chueh FS, Lai TY, Chung JG (2012) Bee venom induces apoptosis through intracellular Ca2 + -modulated intrinsic death pathway in human bladder cancer cells. Int J Urol 19(1):61–70

    Article  PubMed  CAS  Google Scholar 

  21. Son YO, Lee JC, Hitron JA, Pan J, Zhang Z, Shi X (2010) Cadmium induces intracellular Ca2 + - and H2O2-dependent apoptosis through JNK- and p53-mediated pathways in skin epidermal cell line. Toxicol Sci 113(1):127–137

    Article  PubMed  CAS  Google Scholar 

  22. Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S, Borea PA (2005) A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem 280(20):19516–19526

    Article  PubMed  CAS  Google Scholar 

  23. Yamano K, Inoue M, Masaki S, Saki M, Ichimura M, Satoh M (2005) Human adenosine A(3) receptor leads to intracellular Ca2 + mobilization but is insufficient to activate the signaling pathway via phosphoinositide 3-kinase gamma in mice. Biochem Pharmacol 70(10):1487–1496

    Article  PubMed  CAS  Google Scholar 

  24. Ho SY, Chen WC, Chiu HW, Lai CS, Guo HR, Wang YJ (2009) Combination treatment with arsenic trioxide and irradiation enhances apoptotic effects in U937 cells through increased mitotic arrest and ROS generation. Chem Biol Interact 179(2–3):304–313

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson J, Duchen MR (2002) Mitochondrial oxidative stress and cell death in astrocytes—requirement for stored Ca2 + and sustained opening of the permeability transition pore. J Cell Sci 115(Pt 6):1175–1188

    PubMed  CAS  Google Scholar 

  26. Camello-Almaraz C, Gomez-Pinilla PJ, Pozo MJ, Camello PJ (2006) Mitochondrial reactive oxygen species and Ca2 + signaling. Am J Physiol Cell Physiol 291(5):C1082–C1088

    Article  PubMed  CAS  Google Scholar 

  27. Gordeeva AV, Zvyagilskaya RA, Labas YA (2003) Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry (Mosc) 68(10):1077–1080

    Article  CAS  Google Scholar 

  28. Brookes P, Darley-Usmar VM (2002) Hypothesis: the mitochondrial NO(*) signaling pathway, and the transduction of nitrosative to oxidative cell signals: an alternative function for cytochrome C oxidase. Free Radic Biol Med 32(4):370–374

    Article  PubMed  CAS  Google Scholar 

  29. Distelhorst CW, Dubyak G (1998) Role of calcium in glucocorticosteroid-induced apoptosis of thymocytes and lymphoma cells: resurrection of old theories by new findings. Blood 91(3):731–734

    PubMed  CAS  Google Scholar 

  30. Grijalba MT, Vercesi AE, Schreier S (1999) Ca2 + -induced increased lipid packing and domain formation in submitochondrial particles. A possible early step in the mechanism of Ca2 + -stimulated generation of reactive oxygen species by the respiratory chain. Biochemistry 38(40):13279–13287

    Article  PubMed  CAS  Google Scholar 

  31. Dykens JA (1994) Isolated cerebral and cerebellar mitochondria produce free radicals when exposed to elevated CA2 + and Na + : implications for neurodegeneration. J Neurochem 63(2):584–591

    Article  PubMed  CAS  Google Scholar 

  32. Bhaskara VK, Sundaram C, Babu PP (2006) pERK, pAkt and pBad: a possible role in cell proliferation and sustained cellular survival during tumorigenesis and tumor progression in ENU induced transplacental glioma rat model. Neurochem Res 31(9):1163–1170

    Article  PubMed  CAS  Google Scholar 

  33. Jacques-Silva MC, Bernardi A, Rodnight R, Lenz G (2004) ERK, PKC and PI3 K/Akt pathways mediate extracellular ATP and adenosine-induced proliferation of U138-MG human glioma cell line. Oncology 67(5–6):450–459

    Article  PubMed  CAS  Google Scholar 

  34. Jeong JC, Kim SJ, Kim YK, Kwon CH, Kim KH (2012) Lycii cortex radicis extract inhibits glioma tumor growth in vitro and in vivo through downregulation of the Akt/ERK pathway. Oncol Rep 27(5):1467–1474

    PubMed  Google Scholar 

  35. Martindale JL, Holbrook NJ (2002) Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 192(1):1–15

    Article  PubMed  CAS  Google Scholar 

  36. Jeong JC, Kim MS, Kim TH, Kim YK (2009) Kaempferol induces cell death through ERK and Akt-dependent down-regulation of XIAP and survivin in human glioma cells. Neurochem Res 34(5):991–1001

    Article  PubMed  CAS  Google Scholar 

  37. Fadeel B, Ottosson A, Pervaiz S (2008) Big wheel keeps on turning: apoptosome regulation and its role in chemoresistance. Cell Death Differ 15(3):443–452

    Article  PubMed  CAS  Google Scholar 

  38. Otsuki T, Kanno T, Fujita Y, Tabata C, Fukuoka K, Nakano T, Gotoh A, Nishizaki T (2012) A(3) adenosine receptor-mediated p53-dependent apoptosis in Lu-65 human lung cancer cells. Cell Physiol Biochem 30(1):210–220

    Article  PubMed  CAS  Google Scholar 

  39. Morello S, Sorrentino R, Porta A, Forte G, Popolo A, Petrella A, Pinto A (2009) Cl-IB-MECA enhances TRAIL-induced apoptosis via the modulation of NF-kappaB signalling pathway in thyroid cancer cells. J Cell Physiol 221(2):378–386

    Article  PubMed  CAS  Google Scholar 

  40. Liew JC, Tan WS, Alitheen NB, Chan ES, Tey BT (2010) Over-expression of the X-linked inhibitor of apoptosis protein (XIAP) delays serum deprivation-induced apoptosis in CHO-K1 cells. J Biosci Bioeng 110(3):338–344

    Article  PubMed  CAS  Google Scholar 

  41. Nestal de Moraes G, Silva KL, Vasconcelos FC, Maia RC (2011) Survivin overexpression correlates with an apoptosis-resistant phenotype in chronic myeloid leukemia cells. Oncol Rep 25(6):1613–1619

    PubMed  CAS  Google Scholar 

  42. Arora V, Cheung HH, Plenchette S, Micali OC, Liston P, Korneluk RG (2007) Degradation of survivin by the X-linked inhibitor of apoptosis (XIAP)-XAF1 complex. J Biol Chem 282(36):26202–26209

    Article  PubMed  CAS  Google Scholar 

  43. Abkhezr M, Keramati AR, Ostad SN, Davoodi J, Ghahremani MH (2010) The time course of Akt and ERK activation on XIAP expression in HEK 293 cell line. Mol Biol Rep 37(4):2037–2042

    Article  PubMed  CAS  Google Scholar 

  44. Ming M, Han W, Maddox J, Soltani K, Shea CR, Freeman DM, He YY (2010) UVB-induced ERK/AKT-dependent PTEN suppression promotes survival of epidermal keratinocytes. Oncogene 29(4):492–502

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported for 2 years by Pusan National University Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Suk Woo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, T.H., Kim, Y.K. & Woo, J.S. The Adenosine A3 Receptor Agonist Cl-IB-MECA Induces Cell Death Through Ca2+/ROS-Dependent Down Regulation of ERK and Akt in A172 Human Glioma Cells. Neurochem Res 37, 2667–2677 (2012). https://doi.org/10.1007/s11064-012-0855-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0855-5

Keywords

Navigation