Skip to main content

Advertisement

Log in

Design for Optimized Topical Delivery: Prodrugs and a Paradigm Change

  • Review Article
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

In theory, topical delivery has substantial potential to treat local and some systemic disease states more effectively than systemic delivery. Unfortunately many, if not most, drug candidates for topical delivery lack the requisite physicochemical properties that would allow them to permeate the skin to a clinically useful extent. One way to overcome this obstacle to effective topical delivery is to make a transient derivative of the drug, a prodrug, with the correct physicochemical properties. But what are those correct properties and can the directives for the design of prodrugs be applied to the design of new drugs, their analogs or homologs? For some time increasing the lipid solubility (S LIPID) or its surrogate, the partition coefficient between a lipid (LIPID) and water (AQ) (K LIPID:AQ), has been the standard working paradigm for increasing permeation of the skin, and the permeability coefficient (P = distance/time) has been the quantitative measure of the result. However, even the earliest reports on non-prodrugs such as alcohols showed that working paradigm was incorrect and that P should not be the relevant measure of permeation. The shorter chain and more water soluble alcohols exhibiting lower K LIPID:AQ values gave the greater flux values (J = amount/area × time; the more clinically relevant measure of permeation), regardless of whether they were applied neat or in an aqueous vehicle, while P showed opposite trends for the two applications. Subsequently a large volume of work has shown that, for prodrugs and non-prodrug homologs or analogs alike, S AQ (not solubility in the vehicle, S VEH) as well as S LIPID should be optimized to give maximum flux from any vehicle, J MVEH: a new working paradigm. The dependence of J MVEH on S AQ is independent of the vehicle so that S AQ as well as S LIPID are descriptors of the solubilizing capacity of the skin or S M1 in Fick’s law. The inverse dependence of J (or P) on molecular weight (MW) or volume (MV) remains. Here we review the literature that leads to the conclusion that a new working paradigm is necessary to explain the experimental data, and argue for its use in the design of new prodrugs or in the selection of candidate analogs or homologs for commercialization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

Δ log J :

absolute difference between experimental and calculated fluxes

AQ:

water

C 7.4 :

concentration in pH 7.4 buffer

C AQ :

concentration in water

C LIPID :

concentration in a lipid

C M1 :

concentration in the first few layers of membrane

C Mn :

concentration in last layer of membrane

C OCT :

concentration in octanol

C VEH :

concentration in a nonspecified vehicle

D :

diffusion coefficient

D 0 :

diffusion coefficient of a molecule with zero volume

IPM:

isopropyl myristate

J :

flux

J M :

maximum flux

J M4.0 :

maximum flux from pH 4.0 buffer

J M5.0 :

maximum flux from pH 5.0 buffer

J M5.5 :

maximum flux from pH 5.5 buffer

J M6.4 :

maximum flux from pH 6.4 buffer

J M7.4 :

maximum flux from pH 7.4 buffer

J MAQ :

maximum flux from water

J MIPM :

maximum flux from isopropyl myristate

J MLIPID :

maximum flux from a lipid

J MMO :

maximum flux from mineral oil

J MOCT :

maximum flux from octanol

J MVEH :

maximum flux from a nonspecified vehicle

J VEH :

flux from a nonspecified vehicle

K AQ:MO :

partition coefficient between water and mineral oil

K IPM:AQ :

partition coefficient between IPM and water

K LIPID:AQ :

partition coefficient between a lipid and water

K LIPID:VEH :

partition coefficient between a lipid and a nonspecified vehicle

K MEM:AQ :

partition coefficient between a membrane and water

K MEM:LIPID :

partition coefficient between a membrane and lipid

K MEM:VEH :

partition coefficient between a membrane and a nonspecified vehicle

K OCT:4.0 :

partition coefficient between octanol and pH 4.0 buffer

K OCT:5.0 :

partition coefficient between octanol and pH 5.0 buffer

K OCT:7.0 :

partition coefficient between octanol and pH 7.0 buffer

K OCT:7.4 :

partition coefficient between octanol and pH 7.4 buffer

K OCT:AQ :

partition coefficient between octanol and water

K SO:AQ :

partition coefficient between silicone oil and water

L :

effective thickness of membrane

MEM:

membrane

MO:

mineral oil

MV:

molecular volume

MW:

molecular weight

OCT:

octanol

P 4.0 :

permeability coefficient for delivery from pH 4.0 buffer

P 5.0 :

permeability coefficient for delivery from pH 5.0 buffer

P 5.5 :

permeability coefficient for delivery from pH 5.5 buffer

P 7.0 :

permeability coefficient for delivery from pH 7.0 buffer

P 7.4 :

permeability coefficient for delivery from pH 7.4 buffer

P AQ :

permeability coefficient for delivery from water

PG:

Potts–Guy model

P IPM :

permeability coefficient for delivery from IPM

P LIPID :

permeability coefficient for delivery from a lipid

P MO :

permeability coefficient for delivery from mineral oil

P OCT :

permeability coefficient for delivery from octanol

P VEH :

permeability coefficient for delivery from a nonspecified vehicle

RS:

Roberts–Sloan model

S 4.0 :

solubility in pH 4.0 buffer

S 5.0 :

solubility in pH 5.0 buffer

S 6.4 :

solubility in pH 6.4 buffer

S 7.0 :

solubility in pH 7.0 buffer

S 7.4 :

solubility in pH 7.4 buffer

S AQ :

solubility in water

SC:

stratum corneum

S IPM :

solubility in isopropyl myristate

S LIPID :

solubility in a lipid

S M1 :

solubility in the first few layers of membrane

S MO :

solubility in mineral oil

S OCT :

solubility in octanol

S SO :

solubility in silicone oil

S VEH :

solubility in a nonspecified vehicle

VEH:

vehicle

References

  1. G. B. Kasting, R. L. Smith, and E. R. Cooper. Effect of lipid solubilities and molecular size on percutaneous absorption. In B. Shroot, and H. Schaefer (eds.), Skin Pharmacokinetics, Karger, Basel, 1987, pp. 138–153.

    Google Scholar 

  2. M. R. Prausnitz, S. Mitragotri, and R. Langer. Current status and future potential of transdermal drug delivery. Nature Rev. Drug Discov. 3:115–124 (2004).

    Article  CAS  Google Scholar 

  3. A. S. Michaels, S. K. Chandrasekaran, and J. E. Shaw. Drug permeation through human skin: theory and in vitro experimental measurement. AIChE j. 21:985–996 (1975).

    Article  CAS  Google Scholar 

  4. D. Friend, P. Catz, J. Heller, J. Reid, and R. Baker. Transdermal delivery of levonorgestrel II. Effect of prodrug structure on skin permeability in vitro. J. Control. Release 7:251–261 (1988).

    Article  CAS  Google Scholar 

  5. B. W. Barry. Penetration enhancer classification. In E. W. Smith, and H. I. Maibach (eds.), Percutaneous Penetration Enhancers, 2nd ed., Taylor and Francis, Boca Raton, 2006, pp. 3–16.

    Google Scholar 

  6. R. Kadir, D. Stempler, Z. Liron, and S. Cohen. Delivery of theophylline into excised human skin from alkanoic acid solutions: a “push–pull” mechanism. J. Pharm. Sci. 76:774–779 (1987).

    Article  PubMed  CAS  Google Scholar 

  7. P. Karande, A. Jain, K. Ergun, V. Kisporsky, and S. Mitragotri. Design principles of chemical penetration enhancers for transdermal drug delivery. Proc. Natl. Acad. Sci. 102:4688–4693 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. N. Kanikkannan, R. J. Babu, and M. Singh. Structure-activity relationships of chemical penetration enhancers. In E. W. Smith, and H. I. Maibach (eds.), Percutaneous Penetration Enhancers, 2nd ed., Taylor and Francis, Boca Raton, 2006, pp. 17–33.

    Google Scholar 

  9. K. B. Sloan. Prodrug for dermal delivery. Adv. Drug Deliv. Rev. 3:67–101 (1989).

    Article  CAS  Google Scholar 

  10. K. B. Sloan. Functional group considerations in the development of prodrug approaches to solving topical delivery problem. In K. B. Sloan (ed.), Prodrugs: Topical and Ocular Drug Delivery, Marcel Dekker, New York, 1992, pp. 17–116.

    Google Scholar 

  11. K. B. Sloan and S. C. Wasdo. Designing for topical delivery: prodrugs can make the difference. Med. Res. Rev. 23:763–793 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. R. H. Guy and J. Hadgraft. Physicochemical aspects of percutaneous penetration and its enhancement. Pharm. Res. 5:753–758 (1988).

    Article  PubMed  CAS  Google Scholar 

  13. G. L. Flynn. Physicochemical determinates of skin absorption. In J. R. Gerrity and C. J. Henry (eds.), Principles of Route-to-Route Extrapolation for Risk Assessment, Elsevier, Amsterdam, 1990, pp. 93–127.

    Google Scholar 

  14. K. B. Sloan, S. A. M. Koch, and K. G. Siver. Mannich base derivatives of theophylline and 5-fluorouracil: syntheses, properties and topical delivery characteristics. Int. J. Pharm. 21:251–264 (1984).

    Article  CAS  Google Scholar 

  15. J. Hadgraft and W. J. Pugh. The selection and design of topical and transdermal agents: a review. J. Investig. Dermatol. Sym. Proc. 3:131–135 (1998).

    CAS  Google Scholar 

  16. W. J. Roberts and K. B. Sloan. Prediction of transdermal flux of prodrugs of 5-fluorouracil, theophylline and 6-mercaptopurine with a series/parallel model. J. Pharm. Sci. 89:1415–1431 (2000).

    Article  PubMed  CAS  Google Scholar 

  17. J. Ostrenga, C. Steinmetz, and B. Poulsen. Significance of vehicle composition. I. Relationships between topical vehicle composition, skin penetrability, and clinical efficacy. J. Pharm. Sci. 60:1175–1179 (1971).

    Article  PubMed  CAS  Google Scholar 

  18. B. Poulsen, E. Young, V. Coquilla, and M. Katz. Effect of topical vehicle composition on the in vitro release of fluocinolone acetonide and its acetate ester. J. Pharm. Sci. 57:928–933 (1968).

    Article  PubMed  CAS  Google Scholar 

  19. K. B. Sloan, S. A. M. Koch, K. G. Siver, and F. P. Flowers. Use of solubility parameters of drug and vehicle to predict flux through skin. J. Invest. Dermatol. 87:244–252 (1986).

    Article  PubMed  CAS  Google Scholar 

  20. T. Higuchi. Physical chemical analyses of percutaneous absorption process from creams and ointments. J. Soc. Cosmet. Chem. 11:85–97 (1960).

    Google Scholar 

  21. W. J. Roberts and K. B. Sloan. Correlation of aqueous and lipid solubilities with flux of prodrugs of 5-fluorouracil, theophylline and 6-mercaptopurine: a Potts–Guy approach. J. Pharm. Sci. 88:515–522 (1999).

    Article  PubMed  CAS  Google Scholar 

  22. A. L. Stinchcomb, P. W. Swaan, O. Ekabo, K. K. Harris, H. Browe, D. C. Hammell, T. A. Cooperman, and M. Pearsall. Straight-chain naltrexone ester prodrugs: diffusion and concurrent esterase biotransformation in human skin. J. Pharm. Sci. 91:2571–2578 (2002).

    Article  PubMed  CAS  Google Scholar 

  23. B. D. Anderson and P. V. Raykar. Solute structure-permeability relationships in human stratum corneum. J. Invest. Dermatol. 93:280–286 (1989).

    Article  PubMed  CAS  Google Scholar 

  24. R. O. Potts and R. H. Guy. Predicting skin permeability. Pharm. Res. 9:663–669 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. J. Hadgraft, C. Goosen, J. du Plessis, and G. Flynn. Predicting the dermal absorption of thalidomide and its derivatives. Skin Pharmacol. Appl. Skin Physiol. 16:123–129 (2003).

    Article  PubMed  CAS  Google Scholar 

  26. K. B. Sloan, S. C. Wasdo, U. Ezike-Mkparu, T. J. Murray, D. Nickels, S. Singh, T. Shanks, J. Tovar, K. Ulmer, and R. P. Waranis. Topical delivery of 5-fluorouracil and 6-mercaptopurine by their alkylcarbonyloxymethyl prodrugs from water: vehicle effects on design of prodrugs. Pharm. Res. 20:639–645 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. H. D. Beall and K. B. Sloan. Transdermal delivery of 5-fluorouracil (5-FU) by 1-alkylcarbonyl-5-FU prodrugs. Int. J. Pharm. 217:127–137 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. S. Ahmed, T. Imai, and M. Otagiri. Evaluation of stereoselective transdermal transport and concurrent cutaneous hydrolysis of several ester prodrugs of propranolol: mechanism of stereoselective permeation. Pharm. Res. 13:1524–1529 (1996).

    Article  PubMed  CAS  Google Scholar 

  29. S. E. Cross, B. M. Magnusson, G. Winckle, Y. Anissimov, and M. S. Roberts. Determination of the effect of lipophilicity on the in vitro permeability and tissue reservoir characteristics of topically applied solutes in human skin layers. J. Invest. Dermatol. 120:759–764 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. R. J. Scheuplein. Mechanism of percutaneous absorption. II. Transient diffusion and the relative importance of various routes of skin penetration. J. Invest. Dermatol. 48:79–88 (1967).

    PubMed  CAS  Google Scholar 

  31. G. L. Flynn and S. H. Yalkowsky. Correlation and prediction of mass transport across membranes. I. Influence of alkyl chain length on flux determining properties of barrier and diffusant. J. Pharm. Sci. 61:838–852 (1972).

    Article  PubMed  CAS  Google Scholar 

  32. R. Scheuplein and I. Blank. Mechanism of percutaneous absorption, IV. Penetration of nonelectrolytes (alcohols) from aqueous solutions and pure liquids. J. Invest. Dermatol. 60:286–296 (1973).

    Article  CAS  Google Scholar 

  33. KB Sloan, HE Taylor, and JC Hamilton. Alcohol flux and effect on the delivery of theophylline from propylene glycol. Int. J. Pharm. 156:17–26 (1997).

    Article  CAS  Google Scholar 

  34. C. Goosen, T. J. Laing, J. du Plessis, T. C. Goosen, and G. L. Flynn. Physicochemical characterization and solubility analysis of thalidomide and its N-alkyl analogs. Pharm. Res. 19:13–19 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. C. Goosen, T. J. Laing, J. du Plessis, T. C. Goosen, G-W. Lu, and G. L. Flynn. Percutaneous delivery of thalidomide and its N-alkyl analogs. Pharm. Res. 19:434–439 (2002).

    Article  PubMed  CAS  Google Scholar 

  36. S. Majumdar, J. Thomas, S. Wasdo, and KB Sloan. The effect of water solubility of solutes on their flux through human skin: the extended and edited Flynn database. AAPS J. 6(S1):W4250 (2004).

    Google Scholar 

  37. M. Roberts, R. Anderson, and J. Swarbrick. Permeability of human epidermis to phenolic compounds. J. Pharm. Pharmacol. 29:677–683 (1977).

    PubMed  CAS  Google Scholar 

  38. B. D. Anderson, W. I. Higuchi, and P. V. Raykar. Heterogeniety effects on permeability-partition coefficient relationships in human stratum corneum. Pharm. Res. 5:566–573 (1988).

    Article  PubMed  CAS  Google Scholar 

  39. R. J. Scheuplein and I. Blank. Permeabililty of the skin. Physiol. Rev. 51:702–747 (1971).

    PubMed  CAS  Google Scholar 

  40. S. D. Roy and G. L. Flynn. Transdermal delivery of narcotic analgesics: comparative permeabilities of narcotic analgesics through human cadaver skin. Pharm. Res. 6:825–832 (1989).

    Article  PubMed  CAS  Google Scholar 

  41. J. Hadgraft and G. Ridout. Development of model membranes for percutaneous absorption measurements. I. Isopropyl myristate. Int. J. Pharm. 39:149–156 (1987).

    Article  CAS  Google Scholar 

  42. R. J. Scheuplein, I. H. Blank, and D. J. MacFarlane. Percutaneous absorption of steroids. J. Invest. Dermatol. 52:63–70 (1969).

    PubMed  CAS  Google Scholar 

  43. Dal Pozzo, G. Donzelli, E. Liggeri, and L. Rodriguez. Percutaneous absorption of nicotinic acid derivatives in vitro. J. Pharm. Sci. 80:54–57 (1991).

    Article  Google Scholar 

  44. P. Modamio, C. F. Lastra, and E. L. Marino. Transdermal absorption of Celiprolol and Bisoprolol in human skin in vitro. Int. J. Pharm. 173:141–148 (1998).

    Article  CAS  Google Scholar 

  45. P. Modamio, C. F. Lastra, and E. L. Marino. A comparative in vitro study of percutaneous penetration of β-blockers in human skin. Int. J. Pharm. 194:249–259 (2000).

    Article  PubMed  CAS  Google Scholar 

  46. J. A. Cordero, L. Alarcon, E. Escribano, R. Olach, and J. Domenech. A comparative study of the transdermal penetration of a series of nonsteroidal antiinflammatory drugs. J. Pharm. Sci. 86:503–508 (1997).

    Article  PubMed  CAS  Google Scholar 

  47. A. Dal Pozzo and N. Pastori. Percutaneous absorption of parabens from cosmetic formulations. Int. J. Cosmet. Sci. 18:57–66 (1996).

    Article  Google Scholar 

  48. M. E. Johnson, D. Blankschtein, and R. Langer. Evaluation of solute permeation through the stratum corneum: lateral bilayer diffusion as the primary transport mechanism. J. Pharm. Sci. 86:1162–1172 (1997).

    Article  PubMed  CAS  Google Scholar 

  49. L. Gyurosiova, L. Laitinen, J. Raiman, J. Cizmarik, F. Sedlarova, and J. Hirvonin. Permeability profiles of M-alkoxy substituted pyrrolidinoethyl esters of phenylcarbamic acid across Caco-2 cell monolayers and human skin. Pharm. Res. 19:162–168 (2002).

    Article  PubMed  CAS  Google Scholar 

  50. S. D. Roy, J. Fujiki, and J. S. Fleitman. Permeabilities of alkyl p-aminobenzoates through living skin equivalents and and cadaver. J. Pharm. Sci. 82:1266–1268 (1993).

    Article  PubMed  CAS  Google Scholar 

  51. E. Mendes, T. Furtado, J. Neres, J. Iley, T. Jarvinen, J. Rautio, and R. Moreira. Synthesis, stability and in vitro dermal evaluation of aminocarbonyloxymethyl esters as prodrugs of carboxylic acid agents. Bioorg. Med. Chem. 10:809–816 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. J. Rautio, J. Nevalainen, H. Taipale, J. Vepsalainen, J. Gynther, K. Laine, and T. Jarvinen. Piperazinylalkyl prodrugs of naproxen improve in vitro skin permeation. Eur. J. Pharm. Sci. 11:157–163 (2000).

    Article  PubMed  CAS  Google Scholar 

  53. S. Milosovich, A. Hussain, L. Dittert, B. Aungst, and M. Hussain. Testosteronyl-4-dimethylaminobutyrate HCl: a prodrug with improved skin penetration rate. J. Pharm. Sci. 82:227–228 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. J. A. Jona, L. W. Dittert, P. A. Crooks, S. M. Milosovich, and A. A. Hussain. Design of novel prodrugs for the enhancement of the transdermal penetration of indomethacin. Int. J. Pharm. 123:127–136 (1995).

    Article  CAS  Google Scholar 

  55. H. Swart, J. C. Breytenbach, J. Hadgraft, and J. du Plessis. Synthesis and transdermal peneteration of NSAID glycoside esters. Int. J. Pharm. 301:71–79 (2005).

    Article  PubMed  CAS  Google Scholar 

  56. L. M. Monene, C. Goosen, J. C. Breytenbach, J. Hadgraft, and J. du Plessis. Percutaneous absorption of cyclizine and its alkyl analogues. Eur. J. Pharm. Sci. 24:239–244 (2005).

    Article  PubMed  CAS  Google Scholar 

  57. J. Rautio, H. Taipale, J. Gynther, J. Vepsalainen, J. Nevalainen, and T. Jarvinen. In vitro evaluation of acyloxyalkyl esters as dermal prodrugs of ketoprofen and naproxen. J. Pharm. Sci. 87:1622–1628 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. J. Rautio, T. Nevalainen, H. Taipale, J. Vepsalainen, J. Gynther, K. Laine, and J. Jarvinen. Synthesis and in vitro evaluation of novel morpholinyl and methylpiperazinylacyloxyalkyl prodrugs of 2-(6-methoxy-2-naphthly) propionic acid (naproxen) for topical drug delivery. J. Med. Chem. 43:14891494 (2000).

    Article  PubMed  CAS  Google Scholar 

  59. L. Fourie, J. C. Breytenbach, J. du Plessis, C. Goosen, H. Swart, and J. Hadgraft. Percutaneous delivery of carbamazepine and selected N-alkyl and N-hydroxyalkyl analogues. Int. J. Pharm. 279:59–66 (2004).

    Article  PubMed  CAS  Google Scholar 

  60. B. P. Wenkers and B. C. Lippold. Skin penetration of nonsteroidal anti-inflammatory drugs out of a lipophilic vehicle: influence of the viable epidermis. J. Pharm. Sci. 88:1326–1331 (1999).

    Article  PubMed  CAS  Google Scholar 

  61. W. J. Roberts and K. B. Sloan. Application of the transformed Potts–Guy equation to in vivo human skin data. J. Pharm. Sci. 90:1318–1323 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. V. H. Le and B. C. Lippold. Influence of physicochemical properties of homologous esters of nicotinic acid on skin permeability and maximum flux. Int. J. Pharm. 124:285–292 (1995).

    Article  CAS  Google Scholar 

  63. T. Rittirod, T. Hatanaka, N. Kagami, K. Katayama, and J. Koizumi. Simultaneous transport and metabolism of nicotinic acid derivaties in hairless mouse skin. Biol. Pharm. Bull. 22:305–309 (1999).

    PubMed  CAS  Google Scholar 

  64. T-F. Wang, G. B. Kasting, and J. M. Nitsch. A multiphase microscopic diffusion model for stratum corneum permeability. I. Formulation, solution, and illustrative results for representative compounds. J. Pharm. Sci. 95:620–648 (2006).

    Article  PubMed  CAS  Google Scholar 

  65. B. M. Magnusson, Y. G. Anissimov, S. E. Cross, and M. S. Roberts. Molecular size as the main determinant of solute maximum flux across the skin. J. Invest. Dermatol. 122:993–999 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Sloan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sloan, K.B., Wasdo, S.C. & Rautio, J. Design for Optimized Topical Delivery: Prodrugs and a Paradigm Change. Pharm Res 23, 2729–2747 (2006). https://doi.org/10.1007/s11095-006-9108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9108-0

Key words

Navigation