Skip to main content

Advertisement

Log in

Grapefruit Juice and its Constituents Augment Colchicine Intestinal Absorption: Potential Hazardous Interaction and the Role of P-Glycoprotein

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate.

Methods

Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP–BL and BL–AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6′-7′-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum.

Results

Colchicine exhibited 20-fold higher BL–AP than AP–BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP–BL permeability was increased and BL–AP was decreased by GFJ in a concentration-dependent manner (IC50 values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6′-7′-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL–AP secretion (IC50 values of 90, 592 and 11.6 μM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability.

Conclusion

The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. D. G. Bailey, J. D. Spence, B. Edgar, C. D. Bayliff, and J. M. O. Arnold. Ethanol enhances the hemodynamic-effects of felodipine. Clin. Invest. Med. 12:357–362 (1989).

    PubMed  CAS  Google Scholar 

  2. D. G. Bailey, J. Malcolm, O. Arnold, and J. D. Spence. Grapefruit juice–drug interactions. Br. J. Clin. Pharmacol. 46:101–110 (1998) doi:10.1046/j.1365-2125.1998.00764.x.

    Article  PubMed  CAS  Google Scholar 

  3. D. G. Bailey, J. D. Spence, C. Munoz, and J. M. O. Arnold. Interaction of citrus juices with felodipine and nifedipine. Lancet. 337:268–269 (1991) doi:10.1016/0140-6736(91)90872-M.

    Article  PubMed  CAS  Google Scholar 

  4. L. J. Brunner, K.-S. Pai, M. Y. Munar, M. B. Lande, A. J. Olyaei, and J. A. Mowry. Effect of grapefruit juice on cyclosporin A pharmacokinetics in pediatric renal transplant patients. Pediatr. Transplant. 4:313–321 (2000) doi:10.1034/j.1399-3046.2000.00136.x.

    Article  PubMed  CAS  Google Scholar 

  5. U. I. Schwarz, P. E. Johnston, D. G. Bailey, R. B. Kim, G. Mayo, and A. Milstone. Impact of citrus soft drinks relative to grapefruit juice on ciclosporin disposition. Br. J. Clin. Pharmacol. 62:485–491 (2006) doi:10.1111/j.1365-2125.2005.02519.x.

    Article  PubMed  CAS  Google Scholar 

  6. J. J. Lilja, K. T. Kivisto, and P. J. Neuvonen. Grapefruit juice–simvastatin interaction: effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors. Clin. Pharmacol. Ther. 64:477–483 (1998) doi:10.1016/S0009-9236(98)90130-8.

    Article  PubMed  CAS  Google Scholar 

  7. V. Andersen, N. Pedersen, N.-E. Larsen, J. Sonne, and S. Larsen. Intestinal first pass metabolism of midazolam in liver cirrhosis; effect of grapefruit juice. Br. J. Clin. Pharmacol. 54:120–124 (2002) doi:10.1046/j.1365-2125.2002.01615.x.

    Article  PubMed  CAS  Google Scholar 

  8. H. H. T. Kupferschmidt, K. E. Fattinger, H. R. Ha, F. Follath, and S. Krahenbuhl. Grapefruit juice enhances the bioavailability of the HIV protease inhibitor saquinavir in man. Br. J. Clin. Pharmacol. 45:355–359 (1998) doi:10.1046/j.1365-2125.1998.t01-1-00687.x.

    Article  PubMed  CAS  Google Scholar 

  9. H. Spahn-Langguth, and P. Langguth. Grapefruit juice enhances intestinal absorption of the P-glycoprotein substrate talinolol. Eur. J. Pharm. Sci. 12:361 (2001) doi:10.1016/S0928-0987(00)00191-3.

    Article  PubMed  CAS  Google Scholar 

  10. A. Dahan, and H. Altman. Food–drug interaction: grapefruit juice augments drug bioavailability—mechanism, extent and relevance. Eur. J. Clin. Nutr. 58:1 (2004) doi:10.1038/sj.ejcn.1601736.

    Article  PubMed  CAS  Google Scholar 

  11. G. C. Kane, and J. J. Lipsky. Drug–grapefruit juice interactions. Mayo Clin. Proc. 75:933–942 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. S. U. Mertens-Talcott, I. Zadezensky, W. V. De Castro, H. Derendorf, and V. Butterweck. Grapefruit–drug interactions: can interactions with drugs be avoided? J. Clin. Pharmacol. 46:1390–1416 (2006) doi:10.1177/0091270006294277.

    Article  PubMed  CAS  Google Scholar 

  13. E. Ben-Chetrit, and M. Levy. Colchicine: 1998 update. Semin. Arthritis Rheum. 28:48 (1998) doi:10.1016/S0049-0172(98)80028-0.

    Article  PubMed  CAS  Google Scholar 

  14. R. A. Terkeltaub. Gout. N. Engl. J. Med. 349:1647–1655 (2003) doi:10.1056/NEJMcp030733.

    Article  PubMed  CAS  Google Scholar 

  15. H. Amital, and E. Ben-Chetrit. Therapeutic approaches to familial Mediterranean fever. What do we know and where are we going to? Clin. Exp. Rheumatol. 22:S4–S7 (2004).

    PubMed  CAS  Google Scholar 

  16. C. Dinarello, S. Wolff, S. Goldfinger, D. Dale, and D. Alling. Colchicine therapy for familial mediterranean fever. A double-blind trial. N. Engl. J. Med. 291:934–937 (1974).

    Article  PubMed  CAS  Google Scholar 

  17. M. M. Kaplan, and M. E. Gershwin. Primary biliary cirrhosis. N. Engl. J. Med. 353:1261–1273 (2005) doi:10.1056/NEJMra043898.

    Article  PubMed  CAS  Google Scholar 

  18. D. Alarcon-Segovia, F. Ramos-Niembro, G. Ibanez de Kasep, J. Alcocer, and R. Tamayo. Long-term evaluation of colchicine in the treatment of scleroderma. J. Rheumatol. 6:705–712 (1979).

    PubMed  CAS  Google Scholar 

  19. J. Leighton, M. Bay, A. Maldonado, R. Johnson, S. Schenker, and K. Speeg. The effect of liver dysfunction on colchicine pharmacokinetics in the rat. Hepatology. 11:210–215 (1990) doi:10.1002/hep.1840110209.

    Article  PubMed  CAS  Google Scholar 

  20. T. Tateishi, P. Soucek, Y. Caraco, F. P. Guengerich, and A. J. J. Wood. Colchicine biotransformation by human liver microsomes: identification of cyp3A4 as the major isoform responsible for colchicine demethylation. Biochem. Pharmacol. 53:111 (1997) doi:10.1016/S0006-2952(96)00693-4.

    Article  PubMed  CAS  Google Scholar 

  21. B. Bittner, A. Guenzi, P. Fullhardt, G. Zuercher, R. Gonzalez, and R. Mountfield. Improvement of the bioavailability of colchicine in rats by co-administration of D-alpha-tocopherol polyethylene glycol 1000 succinate and a polyethoxylated derivative of 12-hydroxy-stearic acid. Arzneimittelforschung. 52:684–688 (2002).

    PubMed  CAS  Google Scholar 

  22. J. M. Dintaman, and J. A. Silverman. Inhibition of P-glycoprotein by D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). Pharm. Res. 16:1550 (1999) doi:10.1023/A:1015000503629.

    Article  PubMed  CAS  Google Scholar 

  23. G. M. Ferron, M. Rochdi, W. J. Jusko, and J. M. Scherrmann. Oral absorption characteristics and pharmacokinetics of colchicine in healthy volunteers after single and multiple doses. J. Clin. Pharmacol. 36:874–883 (1996).

    PubMed  CAS  Google Scholar 

  24. M. Rochdi, A. Sabouraud, C. Girre, R. Venet, and J. Scherrmann. Pharmacokinetics and absolute bioavailability of colchicine after i.v. and oral administration in healthy human volunteers and elderly subjects. Eur. J. Clin. Pharmacol. 46:351–354 (1994) doi:10.1007/BF00194404.

    Article  PubMed  CAS  Google Scholar 

  25. A. Goldbart, J. Press, S. Sofer, and J. Kapelushnik. Near fatal acute colchicine intoxication in a child. A case report. Eur. J. Pediatr. 159:895 (2000) doi:10.1007/PL00008364.

    Article  PubMed  CAS  Google Scholar 

  26. M. J. Maxwell, P. Muthu, and P. E. Pritty. Accidental colchicine overdose. A case report and literature review. Emerg. Med. J. 19:265–266 (2002) doi:10.1136/emj.19.3.265.

    Article  PubMed  CAS  Google Scholar 

  27. J. Ting. Acute pancreatitis related to therapeutic dosing with colchicine: a case report. J. Med. Case Reports. 1:64 (2007) doi:10.1186/1752-1947-1-64.

    Article  PubMed  Google Scholar 

  28. J. Gao, O. Murase, R. L. Schowen, J. Aube, and R. T. Borchardt. A functional assay for quantitation of the apparent affinities of ligands of P-glycoprotein in Caco-2 cells. Pharm. Res. 18:171 (2001) doi:10.1023/A:1011076217118.

    Article  PubMed  CAS  Google Scholar 

  29. P. Anderle, E. Niederer, W. Rubas, C. Hilgendorf, H. Spahn-Langguth, H. Wunderli-Allenspach, H. P. Merkle, and P. Langguth. P-glycoprotein (P-gp) mediated efflux in Caco-2 cell monolayers: the influence of culturing conditions and drug exposure on P-gp expression levels. J. Pharm. Sci. 87:757–762 (1998) doi:10.1021/js970372e.

    Article  PubMed  CAS  Google Scholar 

  30. I. Hidalgo, T. Raub, and R. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96:736–749 (1989).

    PubMed  CAS  Google Scholar 

  31. J. S. Kim, S. Mitchell, P. Kijek, Y. Tsume, J. Hilfinger, and G. L. Amidon. The suitability of an in situ perfusion model for permeability determinations: utility for BCS class I biowaiver requests. Mol. Pharmaceutics. 3:686–694 (2006) doi:10.1021/mp060042f.

    Article  CAS  Google Scholar 

  32. E. Lipka, H. Lennernas, and G. L. Amidon. Interspecies correlation of permeability estimates: the feasibility of animal data for predicting oral absorption in humans. Pharm. Res. 12:S–311 (1995).

    Google Scholar 

  33. A. Dahan, B. T. West, and G. L. Amidon. Segmental-dependent membrane permeability along the intestine following oral drug administration: evaluation of a triple single-pass intestinal perfusion (TSPIP) approach in the rat. Eur. J. Pharm. Sci. in press (2008) doi:10.1021/mp800088f.

  34. U. Fagerholm, M. Johansson, and H. Lennernas. Comparison between permeability coefficients in rat and human jejunum. Pharm. Res. 13:1336–1342 (1996) doi:10.1023/A:1016065715308.

    Article  PubMed  CAS  Google Scholar 

  35. A. Yussim, N. Bar-Nathan, S. Lustig, E. Shaharabani, E. Geier, D. Shmuely, R. Nakache, and Z. Shapira. Gastrointestinal, hepatorenal, and neuromuscular toxicity caused by cyclosporine-colchicine interaction in renal transplantation. Transplant. Proc. 26:2825–2826 (1994).

    PubMed  CAS  Google Scholar 

  36. U. Troger, H. Lins, J.-M. Scherrmann, C.-W. Wallesch, and S. M. Bode-Boger. Tetraparesis associated with colchicine is probably due to inhibition by verapamil of the P-glycoprotein efflux pump in the blood–brain barrier. BMJ. 331:613 (2005).

    Article  PubMed  Google Scholar 

  37. Y. Caraco, C. Putterman, R. Rahamimov, and E. Ben-Chetrit. Acute colchicine intoxication—possible role of erythromycin administration. J. Rheumatol. 19:494–496 (1992).

    PubMed  CAS  Google Scholar 

  38. I. F. N. Hung, A. K. L. Wu, V. C. C. Cheng, B. S. F. Tang, K. W. To, C. K. Yeung, P. C. Y. Woo, S. K. P. Lau, B. M. Y. Cheung, and K. Y. Yuen. Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study. Clin. Infect. Dis. 41:291–300 (2005) doi:10.1086/431592.

    Article  PubMed  CAS  Google Scholar 

  39. J. Torgovnick, N. Sethi, and E. Arsura. Colchicine and HMG Co-A reductase inhibitors induced myopathy—a case report. Neurotoxicology. 27:1126–1127 (2006) doi:10.1016/j.neuro.2006.09.003.

    Article  PubMed  CAS  Google Scholar 

  40. X. Cao, L. X. Yu, C. Barbaciru, C. P. Landowski, H. C. Shin, S. Gibbs, H. A. Miller, G. L. Amidon, and D. Sun. Permeability dominates in vivo intestinal absorption of P-gp substrate with high solubility and high permeability. Mol. Pharmaceutics. 2:329–340 (2005) doi:10.1021/mp0499104.

    Article  CAS  Google Scholar 

  41. I. Gonzalez-Alvarez, C. Fernandez-Teruel, V. G. Casabo-Alos, T. M. Garrigues, J. E. Polli, A. Ruiz-Garcia, and M. Bermejo. In situ kinetic modelling of intestinal efflux in rats: functional characterization of segmental differences and correlation with in vitro results. Biopharm. Drug Dispos. 28:229–239 (2007) doi:10.1002/bdd.548.

    Article  PubMed  CAS  Google Scholar 

  42. B. Valenzuela, A. Nacher, P. Ruiz-Carretero, A. Martin-Villodre, G. Lopez-Carballo, and D. Barettino. Profile of P-glycoprotein distribution in the rat and its possible influence on the salbutamol intestinal absorption process. J. Pharm. Sci. 93:1641–1648 (2004) doi:10.1002/jps.20071.

    Article  PubMed  CAS  Google Scholar 

  43. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 12:413 (1995) doi:10.1023/A:1016212804288.

    Article  PubMed  CAS  Google Scholar 

  44. N. A. Kasim, M. Whitehouse, C. Ramachandran, M. Bermejo, H. Lennernas, A. S. Hussain, H. E. Junginger, S. A. Stavchansky, K. K. Midha, V. P. Shah, and G. L. Amidon. Molecular properties of WHO essential drugs and provisional biopharmaceutical classification. Mol. Pharmaceutics. 1:85–96 (2004) doi:10.1021/mp034006h.

    Article  CAS  Google Scholar 

  45. A. Dahan and G. L. Amidon. Segmental dependent transport of low permeability compounds along the small intestine due to P-glycoprotein: the role of efflux transport in the oral absorption of BCS class III drugs. Mol. Pharmaceutics in press (2008) doi:10.1016/j.ejps.2008.10.013.

  46. C. Girre, G. Thomas, J. Scherrmann, J. Crouzette, and P. Fournier. Model-independent pharmacokinetics of colchicine after oral administration to healthy volunteers. Fundam. Clin. Pharmacol. 3:537–543 (1989).

    Article  PubMed  CAS  Google Scholar 

  47. H. Lennernas. Animal data: the contributions of the Ussing chamber and perfusion systems to predicting human oral drug delivery in vivo. Adv. Drug Deliv. Rev. 59:1103 (2007) doi:10.1016/j.addr.2007.06.016.

    Article  PubMed  CAS  Google Scholar 

  48. L. X. Yu, E. Lipka, J. R. Crison, and G. L. Amidon. Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption. Adv. Drug Deliv. Rev. 19:359 (1996) doi:10.1016/0169-409X(96)00009-9.

    Article  PubMed  CAS  Google Scholar 

  49. J. Lundahl, C. Regardh, B. Edgar, and G. Johnsson. Relationship between time of intake of grapefruit juice and its effect on pharmacokinetics and pharmacodynamics of felodipine in healthy subjects. Eur. J. Clin. Pharmacol. 49:61–67 (1995) doi:10.1007/BF00192360.

    Article  PubMed  CAS  Google Scholar 

  50. H. Takanaga, A. Ohnishi, H. Murakami, H. Matsuo, S. Higuchi, A. Urae, S. Irie, H. Furuie, K. Matsukuma, M. Kimura, K. Kawano, Y. Orii, T. Tanaka, and Y. Sawada. Relationship between time after intake of grapefruit juice and the effect on pharmacokinetics and pharmacodynamics of nisoldipine in healthy subjects. Clin. Pharmacol. Ther. 67:201 (2000) doi:10.1067/mcp.2000.104215.

    Article  PubMed  CAS  Google Scholar 

  51. J. J. Lilja, K. T. Kivisto, and P. J. Neuvonen. Duration of effect of grapefruit juice on the pharmacokinetics of the CYP3A4 substrate simvastatin[ast]. Clin. Pharmacol. Ther. 68:384 (2000) doi:10.1067/mcp.2000.110216.

    Article  PubMed  CAS  Google Scholar 

  52. W. V. De Castro, S. Mertens-Talcott, H. Derendorf, and V. Butterweck. Grapefruit juice–drug interactions: grapefruit juice and its components inhibit P-glycoprotein (ABCB1) mediated transport of talinolol in Caco-2 cells. J. Pharm. Sci. 96:2808–2817 (2007) doi:10.1002/jps.20975.

    Article  PubMed  CAS  Google Scholar 

  53. W. V. De Castro, S. Mertens-Talcott, A. Rubner, V. Butterweck, and H. Derendorf. Variation of flavonoids and furanocoumarins in grapefruit juices: a potential source of variability in grapefruit juice–drug interaction studies. J. Agric. Food Chem. 54:249–255 (2006) doi:10.1021/jf0516944.

    Article  PubMed  CAS  Google Scholar 

  54. B. Ameer, R. A. Weintraub, J. V. Johnson, R. A. Yost, and R. L. Rouseff. Flavanone absorption after naringin, hesperidin, and citrus administration. Clin. Pharmacol. Ther. 60:34 (1996) doi:10.1016/S0009-9236(96)90164-2.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gordon L. Amidon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahan, A., Amidon, G.L. Grapefruit Juice and its Constituents Augment Colchicine Intestinal Absorption: Potential Hazardous Interaction and the Role of P-Glycoprotein. Pharm Res 26, 883–892 (2009). https://doi.org/10.1007/s11095-008-9789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-008-9789-7

KEY WORDS

Navigation