Skip to main content

Advertisement

Log in

The Use of F-18 Choline PET in the Assessment of Bone Metastases in Prostate Cancer: Correlation with Morphological Changes on CT

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

An Erratum to this article was published on 30 March 2010

Abstract

Aim

F-18 fluor choline-positron emission tomography/computed tomography (FCH-PET/CT) has emerged as a new diagnostic tool for the imaging of prostate cancer. In this study, we have evaluated the potential role of FCH-PET/CT for the assessment of bone metastases in patients with prostate cancer. Furthermore, we assessed the pattern of metabolic uptake by FCH in relation to morphologic changes on CT.

Methods

Seventy men with biopsy-proven prostate cancer underwent FCH-PET/CT for preoperative staging or follow-up evaluation. Thirty-two patients were evaluated preoperatively, and 38 patients were referred for post operative evaluation of suspected recurrence or progression based on clinical algorithms. PET imaging consisted of a dynamic PET/CT acquisition of the pelvic region during 8 min (1-min frames) starting 1 min after i.v. injection of 4.07 MBq/kg/bw FCH which was followed immediately by a semi whole body acquisition.

Results

Overall, 262 lesions showed increased uptake on FCH-PET. Two hundred ten lesions (210/262) were interpreted as bone metastases. The mean standardized uptake values (SUV) in all malignant lesions was 8.1 ± 3.9. Forty-nine lesions (24%) had no detectable morphological changes on CT—probably due to bone marrow metastases. Fifty-six sclerotic lesions (having a Hounsfield unit (HU) level of more than 825) were interpreted as highly suspicious for metastatic bone disease on CT and/or other imaging modalities such as the bone scan but showed no FCH uptake. There was a significant correlation between tracer uptake as assessed by SUV and the density of sclerotic lesions by HU (r = −0.52, p < 0.001). The sensitivity, specificity, and accuracy of FCH-PET/CT in detecting bone metastases from prostate cancer was 79%, 97%, and 84%, respectively.

Conclusion

FCH-PET/CT showed promising results for the early detection of bone metastases in prostate cancer patients. We have found that a HU level of above 825 is associated with an absence of FCH uptake. Almost all of the FCH-negative sclerotic lesions were detected in patients who were under hormone therapy, which raises the possibility that these lesions might no longer be viable. However, clarification and the prognostic value of such lesions require further research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jemal A, Tiwari RC, Murray T et al (2004) Cancer statistics, 2004. CA Cancer J Clin 54(1):8–29

    Article  PubMed  Google Scholar 

  2. Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC (2003) Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol 169(2):517–523

    Article  PubMed  Google Scholar 

  3. Hricak H, Schoder H, Pucar D et al (2003) Advances in imaging in the postoperative patient with a rising prostate-specific antigen level. Semin Oncol 30(5):616–634

    Article  PubMed  Google Scholar 

  4. Schoder H, Larson SM (2004) Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl med 34(4):274–292

    Article  PubMed  Google Scholar 

  5. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47(2):287–297

    PubMed  Google Scholar 

  6. Abuzallouf S, Dayes I, Lukka H (2004) Baseline staging of newly diagnosed prostate cancer: a summary of the literature. J Urol 171(6 Pt 1):2122–2127

    Article  PubMed  Google Scholar 

  7. Fogelman I, Cook G, Israel O, Van der Wall H (2005) Positron emission tomography and bone metastases. Semin Nucl Med 35(2):135–142

    Article  PubMed  Google Scholar 

  8. Lee N, Fawaaz R, Olsson CA et al (2000) Which patients with newly diagnosed prostate cancer need a radionuclide bone scan? An analysis based on 631 patients. Int J Radiat Oncol Biol Phys 48(5):1443–1446

    CAS  PubMed  Google Scholar 

  9. Wymenga LF, Boomsma JH, Groenier K, Piers DA, Mensink HJ (2001) Routine bone scans in patients with prostate cancer related to serum prostate-specific antigen and alkaline phosphatase. BJU Int 88(3):226–230

    Article  CAS  PubMed  Google Scholar 

  10. Yap BK, Choo R, Deboer G, Klotz L, Danjoux C, Morton G (2003) Are serial bone scans useful for the follow-up of clinically localized, low to intermediate grade prostate cancer managed with watchful observation alone? BJU Int 91(7):613–617

    Article  CAS  PubMed  Google Scholar 

  11. Gomez P, Manoharan M, Kim SS, Soloway MS (2004) Radionuclide bone scintigraphy in patients with biochemical recurrence after radical prostatectomy: when is it indicated? BJU Int 94(3):299–302

    Article  PubMed  Google Scholar 

  12. Rigaud J, Tiguert R, Le Normand L et al (2002) Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol 168(4 Pt 1):1423–1426

    PubMed  Google Scholar 

  13. Sabbatini P, Larson SM, Kremer A et al (1999) Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol 17(3):948–957

    CAS  PubMed  Google Scholar 

  14. Jacobson AF, Fogelman I (1998) Bone scanning in clinical oncology: does it have a future? Eur J Nucl Med 25(9):1219–1223

    Article  CAS  PubMed  Google Scholar 

  15. Schirrmeister H, Glatting G, Hetzel J et al (2001) Prospective evaluation of the clinical value of planar bone scans, SPECT, and (18)F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med 42(12):1800–1804

    CAS  PubMed  Google Scholar 

  16. Schirrmeister H, Guhlmann A, Elsner K et al (1999) Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med 40(10):1623–1629

    CAS  PubMed  Google Scholar 

  17. Effert PJ, Bares R, Handt S, Wolff JM, Bull U, Jakse G (1996) Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorine-labeled deoxyglucose. J Urol 155(3):994–998

    Article  CAS  PubMed  Google Scholar 

  18. Heicappell R, Muller-Mattheis V, Reinhardt M et al (1999) Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[(18)F]-2-deoxy-D-glucose. Eur Urol 36(6):582–587

    Article  CAS  PubMed  Google Scholar 

  19. Hofer C, Laubenbacher C, Block T, Breul J, Hartung R, Schwaiger M (1999) Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36(1):31–35

    Article  CAS  PubMed  Google Scholar 

  20. Liu IJ, Zafar MB, Lai YH, Segall GM, Terris MK (2001) Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57(1):108–111

    Article  CAS  PubMed  Google Scholar 

  21. Morris MJ, Akhurst T, Osman I et al (2002) Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59(6):913–918

    Article  PubMed  Google Scholar 

  22. Shreve PD, Grossman HB, Gross MD, Wahl RL (1996) Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199(3):751–756

    CAS  PubMed  Google Scholar 

  23. Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Semin Nucl Med 36(1):73–92

    Article  PubMed  Google Scholar 

  24. Cimitan M, Bortolus R, Morassut S et al (2006) [(18)F]fluorocholine PET/CT imaging for the detection of recurrent prostate cancer at PSA relapse: experience in 100 consecutive patients. Eur J Nucl Med Mol Imaging 33(12):1387–1398

    Article  PubMed  Google Scholar 

  25. Reske SN, Blumstein NM, Neumaier B et al (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47(8):1249–1254

    CAS  PubMed  Google Scholar 

  26. Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39(6):990–995

    CAS  PubMed  Google Scholar 

  27. Kwee SA, Wei H, Sesterhenn I, Yun D, Coel MN (2006) Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med 47(2):262–269

    PubMed  Google Scholar 

  28. Schmid DT, John H, Zweifel R et al (2005) Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 235(2):623–628

    Article  PubMed  Google Scholar 

  29. Vassiliev D, Krasikova R, Kutznetsova O, Federova O, Nader M (2003) Simple HPLC Method for the Detection of N,N-dimethylaminoethanol in the Preparation of [N-methyl-11C] Choline. Eur J Nucl Med Mol Imaging 30(Suppl):342P

    Google Scholar 

  30. Lin C, Itti E, Haioun C et al (2007) Early 18F-FDG PET for prediction of prognosis in patients with diffuse large B-cell lymphoma: SUV-based assessment versus visual analysis. J Nucl Med 48(10):1626–1632

    Article  PubMed  Google Scholar 

  31. Hallett WA, Marsden PK, Cronin BF, O'Doherty MJ (2001) Effect of corrections for blood glucose and body size on [18F]FDG PET standardised uptake values in lung cancer. Eur J Nucl Med 28(7):919–922

    Article  CAS  PubMed  Google Scholar 

  32. Even-Sapir E, Mishani E, Flusser G, Metser U (2007) 18F-Fluoride positron emission tomography and positron emission tomography/computed tomography. Semin Nucl Med 37(6):462–469

    Article  PubMed  Google Scholar 

  33. Even-Sapir E, Metser U, Flusser G et al (2004) Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45(2):272–278

    PubMed  Google Scholar 

  34. Schirrmeister H, Guhlmann A, Kotzerke J et al (1999) Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol 17(8):2381–2389

    CAS  PubMed  Google Scholar 

  35. Yeh SD, Imbriaco M, Larson SM et al (1996) Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl Med Biol 23(6):693–697

    Article  CAS  PubMed  Google Scholar 

  36. Cook GJ, Houston S, Rubens R, Maisey MN, Fogelman I (1998) Detection of bone metastases in breast cancer by 18FDG PET: differing metabolic activity in osteoblastic and osteolytic lesions. J Clin Oncol 16(10):3375–3379

    CAS  PubMed  Google Scholar 

  37. Morris MJ, Akhurst T, Larson SM et al (2005) Fluorodeoxyglucose positron emission tomography as an outcome measure for castrate metastatic prostate cancer treated with antimicrotubule chemotherapy. Clin Cancer Res 11(9):3210–3216

    Article  CAS  PubMed  Google Scholar 

  38. Langsteger W, Beheshti M, Nader M et al (2006) Evaluation of lymph node and bone metastases with Fluor Choline (FCH) PET-CT in the follow up of prostate cancer patients. Eur J Nucl Med mol Imaging 33(Suppl 2):209

    Google Scholar 

  39. Galasko CS (1986) Skeletal metastases. Clin Orthop Relat Res 210:18–30

    PubMed  Google Scholar 

  40. Clavo AC, Brown RS, Wahl RL (1995) Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia. J Nucl Med 36(9):1625–1632

    CAS  PubMed  Google Scholar 

  41. Vessella RL, Corey E (2006) Targeting factors involved in bone remodeling as treatment strategies in prostate cancer bone metastasis. Clin Cancer Res 12(20 Pt 2):6285s–6290s

    Article  CAS  PubMed  Google Scholar 

  42. Goya M, Ishii G, Miyamoto S et al (2006) Prostate-specific antigen induces apoptosis of osteoclast precursors: potential role in osteoblastic bone metastases of prostate cancer. Prostate 66(15):1573–1584

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Beheshti.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s11307-010-0327-8

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beheshti, M., Vali, R., Waldenberger, P. et al. The Use of F-18 Choline PET in the Assessment of Bone Metastases in Prostate Cancer: Correlation with Morphological Changes on CT. Mol Imaging Biol 11, 446–454 (2009). https://doi.org/10.1007/s11307-009-0217-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0217-0

Key words

Navigation