Skip to main content

Advertisement

Log in

The Effect of Bariatric Surgery on Intestinal Absorption and Transit Time

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Bariatric surgical procedures are classified by their presumed mechanisms of action: restrictive, malabsorptive or a combination of both. However, this dogma is questionable and remains unproven. We investigated post-operative changes in nutrient absorption and transit time following bariatric surgery.

Methods

Participants were recruited into four groups: obese controls (body mass index (BMI) >30 kg/m2, n = 7), adjustable gastric banding (n = 6), Roux-en-Y gastric bypass (RYGB, n = 7) and biliopancreatic diversion with duodenal switch (DS, n = 5). Participants underwent sulphasalazine/sulphapyridine tests (oro-caecal transit time); fasting plasma citrulline (functional enterocyte mass); 3 days faecal collection for faecal elastase 1 (FE-1); calprotectin (FCp); faecal fatty acids (pancreatic exocrine function, gut inflammation and fat excretion, respectively); and 5 h d-xylose, l-rhamnose and lactulose test (intestinal absorption and permeability).

Results

Age and gender were not different but BMI differed between groups (p = 0.001). No difference in oro-caecal transit time (p = 0.935) or functional enterocyte mass (p = 0.819) was detected. FCp was elevated post-RYGB vs obese (p = 0.016) and FE-1 was reduced post-RYGB vs obese (p = 0.002). Faecal fat concentrations were increased post-DS vs obese (p = 0.038) and RYGB (p = 0.024) and were also higher post-RYGB vs obese (p = 0.033). Urinary excretion of d-xylose and l-rhamnose was not different between the groups; however, lactulose/rhamnose ratio was elevated post-DS vs other groups (all p < 0.02), suggesting increased intestinal permeability.

Conclusions

Following RYGB, there are surprisingly few abnormalities or indications of severe malabsorption of fats or sugars. Small bowel adaptation after bariatric surgery may be key to understanding the mechanisms responsible for the beneficial metabolic effects of these operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AGB:

Adjustable gastric band

BPD:

Biliopancreatic diversion

BMI:

Body mass index

DS:

Biliopancreatic diversion with duodenal switch

ELISA:

Enzyme linked immunosorbent assay

FCp:

Faecal calprotectin

FE-1:

Faecal elastase-1

GLP-1:

Glucagon-like peptide 1

GLP-2:

Glucagon-like peptide 2

HPLC:

High-performance liquid chromatography

PYY:

Peptide tyrosine-tyrosine

RYGB:

Roux-en-Y gastric bypass

SBPT:

Small bowel permeability test

SP:

Sulphapyridine

SZ:

Sulphasalazine

References

  1. O’Brien PE. Bariatric surgery: mechanisms, indications and outcomes. J Gastroenterol Hepatol. 2010;25:1358–65.

    Article  PubMed  Google Scholar 

  2. Brolin RE, Kenler HA, Gorman JH, et al. Long-limb gastric bypass in the superobese: a prospective randomised study. Ann Surg. 1992;215:387–95.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  3. Scopinaro N, Gianetta E, Civalleri D, et al. Biliopancreatic bypass for obesity: initial experience in man. Br J Surg. 1979;66:618–20.

    Article  PubMed  CAS  Google Scholar 

  4. Scopinaro N, Gianetta E, Adami GF, et al. Biliopancreatic diversion for obesity at eighteen years. Surgery. 1996;119:261–8.

    Article  PubMed  CAS  Google Scholar 

  5. Hess DS, Hess DW. Biliopancreatic diversion with a duodenal switch. Obes Surg. 1998;8:267–82.

    Article  PubMed  CAS  Google Scholar 

  6. Marceau P, Hould FS, Simard S, et al. Biliopancreatic diversion with duodenal switch. World J Surg. 1998;22:947–54.

    Article  PubMed  CAS  Google Scholar 

  7. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292:1724–37.

    Article  PubMed  CAS  Google Scholar 

  8. Sovik TT, Aashelm ET, Taha O, et al. Weight loss, cardiovascular risk factors, and quality of life after gastric bypass and duodenal switch. Ann Intern Med. 2011;155:281–91.

    Article  PubMed  Google Scholar 

  9. Kennedy M, Chinwah P, Wade DN. A pharmacological method of measuring mouth caecal transit time in man. Br J Clin Pharmacol. 1979;8:372–3.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Kellow JE, Borody TJ, Phillip SF, et al. Sulfapyridine appearance in plasma after salicylazosulfapyridine. Gastroenterology. 1986;91:396–400.

    PubMed  CAS  Google Scholar 

  11. Saniforth DH. Comparison of oro-caecal transit times assessed by the lactulose/breath hydrogen and the sulphasalazine/sulphapyridine methods. Gut. 1989;30:978–82.

    Article  Google Scholar 

  12. Chungi VS, Rekhi GS, Shargel L. A simple and rapid liquid chromatographic method for the determination of major metabolites of sulphasalazine in biological fluids. J Pharmaceut Sci. 1989;78:235–8.

    Article  CAS  Google Scholar 

  13. Curis E, Crenn P, Cynober L. Citrulline and the gut. Curr Opin Clin Nutr Metab Care. 2007;10:620–6.

    Article  PubMed  CAS  Google Scholar 

  14. Weber FL, Reiser BJ. Relationship of plasma amino acids to nitrogen balance and portal-systemic encephalopathy in alcoholic liver disease. Dig Dis Sci. 1982;27:103–9.

    Article  PubMed  Google Scholar 

  15. Papadia C, Sherwood RA, Kalantzis C, et al. Plasma citrulline concentration: a reliable marker of small bowel absorptive capacity independent of intestinal inflammation. Am J Gastroenterol. 2007;102:1474–82.

    Article  PubMed  CAS  Google Scholar 

  16. Sherwood RA. Amino acid measurement by high performance liquid chromatography using electrochemical detection. J Neurosci Methods. 1990;34:17–22.

    Article  PubMed  CAS  Google Scholar 

  17. Stein J, Jung M, Sziegoleit A, et al. Immunoreactive elastase 1: clinical evaluation of a new noninvasive test of pancreatic function. Clin Chem. 1996;42:222–6.

    PubMed  CAS  Google Scholar 

  18. Dominguez-Munoz JE, Hieronymus C, Sauerbruch T, et al. Fecal elastase test: evaluation of a new noninvasive pancreatic function test. Am J Gastroenterol. 1995;90:1834–7.

    PubMed  CAS  Google Scholar 

  19. Symersky T, van der Zon A, Biemond I, et al. Faecal elastase-1: helpful in analysing streatorrhoea? Neth J Med. 2004;62:286–9.

    PubMed  CAS  Google Scholar 

  20. Kampanis P, Ford L, Berg J. Development and validation of an improved test for the measurement of human faecal elastase-1. Ann Clin Biochem. 2009;46:33–7.

    Article  PubMed  Google Scholar 

  21. Thomas PD, Forbes A, Green J et al. Guidelines for the investigation of chronic diarrhoea. Gut 2003;52(suppl V):v1-5.

    Google Scholar 

  22. Duncan A, Hill PG. A review of the quality of gastrointestinal investigations performed in UK laboratories. Ann Clin Biochem. 2007;44:145–58.

    Article  PubMed  Google Scholar 

  23. Konikoff MR, Denson LA. Role of fecal calprotectin as a biomarker of intestinal inflammation in inflammatory bowel disease. Inflamm Bowel Dis. 2006;12:524–34.

    Article  PubMed  Google Scholar 

  24. Lundberg JO, Hellstrom PM, Fagerhol MK, et al. Technology insight: calprotectin, lactoferrin and nitric oxide as novel markers of inflammatory bowel disease. Nat Clin Pract Gastroenterol Hepatol. 2005;2:96–102.

    Article  PubMed  CAS  Google Scholar 

  25. Fagerhol MK. Calprotectin, a faecal marker or organic gastrointestinal abnormality. Lancet. 2000;356:1783–4.

    Article  PubMed  CAS  Google Scholar 

  26. Van de Kamer JH, Bokkel Huinink HT, Weyers HA. Rapid method for the determination of fat in feces. J Biol Chem. 1949;177:347–55.

    Google Scholar 

  27. Bjarnason I, MacPherson A, Hollander D. Intestinal permeability: an overview. Gastroenterol. 1995;108:1566–81.

    Article  CAS  Google Scholar 

  28. Derikx JPM, Luyer MDP, Heineman E, et al. Non-invasive markers of gut wall integrity in health and disease. World J Gastroenterol. 2010;16:5272–9.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sharpstone D, Neild P, Crane R, et al. Small intestinal transit, absorption, and permeability in patients with AIDS with and without diarrhoea. Gut. 1999;45:70–6.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Burton PR, Yap K, Brown WA, et al. Effects of adjustable gastric bands on gastric emptying, supra- and infraband transit and satiety: a randomized double-blind crossover trial using a new technique of band visualization. Obes Surg. 2010;20:1690–7.

    Article  PubMed  Google Scholar 

  31. Dixon AFR, Dixon JB, O’Brien PE. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J Clin Endocrinol Metab. 2005;90:813–9.

    Article  PubMed  CAS  Google Scholar 

  32. Naslund I. The size of the gastric outlet and the outcome of surgery for obesity. Acta Chir Scand. 1986;152:205–10.

    PubMed  CAS  Google Scholar 

  33. Nishie A, Brown B, Barloon T, et al. Comparison of size of proximal gastric pouch and short-term weight loss following routine upper gastrointestinal contrast study after laparoscopic Roux-en-Y gastric bypass. Obes Surg. 2007;17:1183–8.

    Article  PubMed  Google Scholar 

  34. O’Connor EA, Carlin AM. Lack or correlation between variation in small-volume gastric pouch size and weight loss after laparoscopic Roux-en-Y gastric bypass. Surg Obes Relat Dis. 2008;4:399–403.

    Article  PubMed  Google Scholar 

  35. Madan AK, Tichansky DS, Phillips JC. Does pouch size matter? Obes Surg. 2007;17:317–20.

    Article  PubMed  Google Scholar 

  36. Halverson JD, Koehler RE. Gastric bypass: analysis of weight loss and factors determining success. Surgery. 1981;90:446–55.

    PubMed  CAS  Google Scholar 

  37. Roberts K, Duffy A, Kaufman J, et al. Size matters: gastric pouch size correlates with weight loss after laparoscopic Roux-en-Y gastric bypass. Surg Endosc. 2007;21:1397–402.

    Article  PubMed  CAS  Google Scholar 

  38. Björklund P, Laurenius A, Een E, et al. Is the Roux limb a determinant for meal size after gastric bypass surgery? Obes Surg. 2010;20:1408–14.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Scopinaro N, Gianetta E, Civalleri D, et al. Two years of clinical experience with bilio-pancreatic bypass for obesity. Am J Clin Nutr. 1980;33:506–14.

    PubMed  CAS  Google Scholar 

  40. Morinigo R, Moize V, Musri M, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91:1735–40.

    Article  PubMed  CAS  Google Scholar 

  41. Hould FS, Lagace M, Marceau P, et al. Hastened gastric emptying after partial gastrectomy and duodenal switch. Obes Surg. 1996;6:121–2.

    Google Scholar 

  42. Hedburg J, Hedenstrom H, Karlsson FA, et al. Gastric emptying and postprandial PYY response after biliopancreatic diversion with duodenal switch. Obes Surg. 2011;21:609–15.

    Article  Google Scholar 

  43. Naslund I, Beckman K-W. Gastric emptying rate after gastric bypass and gastroplasty. Scand J Gastroenterol. 1987;22:193–201.

    Article  PubMed  CAS  Google Scholar 

  44. Horowitz M, Cook DJ, Collins PJ, et al. Measurement of gastric emptying after gastric bypass surgery using radionuclides. Br J Surg. 1982;69:655–7.

    Article  PubMed  CAS  Google Scholar 

  45. Pellegrini CA, Deveney CW, Patti MG, et al. Intestinal transit of food after total gastrectomy and Roux-en-Y esophagojejunostomy. Am J Surg. 1986;151:177–85.

    Article  Google Scholar 

  46. Gonlachanvit S, Coleski R, Owyang C, et al. Inhibitory actions of a high fibre diet on intestinal gas transit in healthy volunteers. Gut. 2004;53:1577–82.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  47. Flint A, Raben A, Ersboll AK, et al. The effect of physiological levels of glucagon-like peptide-1 on appetite, gastric emptying, energy and substrate metabolism in obesity. Int J Obes. 2001;25:781–92.

    Article  CAS  Google Scholar 

  48. Read NW, Cammack J, Edwards C, et al. Is the transit time of a meal through the small intestine related to the rate at which it leaves the stomach? Gut. 1982;23:824–8.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Skroubis G, Sakellaropoulos G, Pouggouras K, et al. Comparison of nutritional deficiencies after Roux-en-Y gastric bypass and after biliopancreatic diversion with a Roux-en-Y gastric bypass. Obes Surg. 2002;12:551–8.

    Article  PubMed  Google Scholar 

  50. DiBaise JK, Young RJ, Vanderhoof JA. Intestinal rehabilitation and the short bowel syndrome: part 1. Am J Gastroenterol. 2004;99:1386–95.

    Article  PubMed  Google Scholar 

  51. Le Roux CW, Borg C, Wallis K, et al. Gut hypertrophy after gastric bypass is associated with increased glucagon-like peptide 2 and intestinal crypt cell proliferation. Ann Surg. 2010;252:50–6.

    Article  PubMed  Google Scholar 

  52. Stock-Damge C, Aprahamian M, Raul F, et al. Small-intestinal and colonic changes after biliopancreatic bypass for morbid obesity. Scand J Gastroenterol. 1986;21:1115–23.

    Article  PubMed  CAS  Google Scholar 

  53. Drucker DJ. Glucagon-like peptides: regulators of cell proliferation, differentiation, and apoptosis. Mol Endocrinol. 2003;17:161–71.

    Article  PubMed  CAS  Google Scholar 

  54. Estall JL, Drucker DJ. Dual regulation of cell proliferation and survival via activation of glucagon-like peptide-2 receptor signalling. J Nutr. 2003;133:3708–11.

    PubMed  CAS  Google Scholar 

  55. Jeppesen PB. Clinical significance of GLP-2 in short-bowel syndrome. J Nutr. 2003;133:3721–4.

    PubMed  CAS  Google Scholar 

  56. Mason EE, Munns JR, Kealey GP, et al. Effect of gastric bypass on gastric secretion. Am J Surg. 1976;131:162–8.

    Article  PubMed  CAS  Google Scholar 

  57. Ponsky TA, Brody F, Pucci E. Alterations in gastrointestinal physiology after Roux-en-Y gastric bypass. Am Coll Surg. 2005;201:125–31.

    Article  Google Scholar 

  58. Satake K, Nishiwaki H, Uneyama K. Comparative studies of plasma secretin response after reconstructive surgery of the stomach and pancreas. Ann Surg. 1985;201:447–51.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Emas S, Billings A, Grossman MI. Effects of gastrin and pentagastrin on gastric and pancreatic secretion in dogs. Scand J Gastroenterol. 1968;3:234–40.

    Article  PubMed  CAS  Google Scholar 

  60. Mason EE, Ito C. Gastric bypass. Ann Surg. 1969;170:329–36.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Borg CM, le Roux CW, Ghatei MA, et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br J Surg. 2006;93:210–5.

    Article  PubMed  CAS  Google Scholar 

  62. Borg CM, le Roux CW, Ghatei MA, et al. Biliopancreatic diversion in rats is associated with intestinal hypertrophy and with increased GLP-1, GLP-2 and PYY levels. Obes Surg. 2007;17:1193–8.

    Article  PubMed  Google Scholar 

  63. le Roux CW, Aylwin SJB, Batterham RL, et al. Gut hormone profiles following bariatric surgery favour an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg. 2006;243:108–14.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Wettergren A, Schjoldager B, Mortensen PE, et al. Truncated GLP-1 (Proglucagon 78-107-amide) inhibits gastric and pancreatic functions in man. Dig Dis Sci. 1993;38:665–73.

    Article  PubMed  CAS  Google Scholar 

  65. Wettergren A, Petersen H, Orskov C, et al. Glucagon-like peptide-1 7-36 amide and peptide YY from the L-cell of the ileal mucosa are potent inhibitors of vagally induced gastric acid secretion in man. Scand J Gastroenterol. 1994;29:501–5.

    Article  PubMed  CAS  Google Scholar 

  66. Lluis F, Gomez G, Fujimura M, et al. Peptide YY inhibits nutrient-, hormonal-, and vagally stimulated pancreatic exocrine secretion. Pancreas. 1987;2:454–62.

    Article  PubMed  CAS  Google Scholar 

  67. Lluis F, Gomez M, Fujimura M, et al. Peptide YY inhibits pancreatic secretion by inhibiting cholecystokinin release in the dog. Gastroenterol. 1988;94:137–44.

    CAS  Google Scholar 

  68. Allen JM, Fitzpatrick ML, Yeats JC, et al. Effects of peptide YY and neuropeptide Y on gastric emptying in man. Digestion. 1984;30:255–62.

    Article  PubMed  CAS  Google Scholar 

  69. Pappas TN, Debas HT, Goto Y, et al. Peptide YY inhibits meal-stimulated pancreatic and gastric secretion. Am J Physiol Gastrointest Liver Physiol. 1985;248:G118–23.

    CAS  Google Scholar 

  70. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444:860–7.

    Article  PubMed  CAS  Google Scholar 

  71. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. 2005;115:1111–9.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Nijhuis J, Rensen SS, Slaats Y, et al. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity. 2009;17:2014–8.

    Article  PubMed  CAS  Google Scholar 

  73. Park HK, Sinar DR, Sloss RR, et al. Histologic and endoscopic studies before and after gastric bypass surgery. Arch Pathol Lab Med. 1986;110:1164–7.

    PubMed  CAS  Google Scholar 

  74. Sinar DR, Flickinger EG, Park HK, et al. Retrograde endoscopy of the bypassed stomach segment after gastric bypass surgery: unexpected lesions. South Med J. 1985;78:255–8.

    Article  PubMed  CAS  Google Scholar 

  75. Flickinger EG, Sinar DR, Pories WJ, et al. The bypassed stomach. Am J Surg. 1985;149:151–6.

    Article  PubMed  CAS  Google Scholar 

  76. Martinez-Augustin O, Sanchez de Medina F. Intestinal bile acid physiology and pathophysiology. World J Gastroenterol. 2008;14:5630–40.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Pezzilli R, Barassi A, Morselli-Labate AM, et al. Fecal calprotectin and elastase 1 determinations in patients with pancreatic diseases: a possible link between pancreatic insufficiency and intestinal inflammation. J Gastroenterol. 2007;42:754–60.

    Article  PubMed  Google Scholar 

  78. Ito C, Mason EE. Gastric bypass and pancreatic secretion. Surgery. 1971;69:526–32.

    PubMed  CAS  Google Scholar 

  79. Choban PS, Flancbaum L. The effect of roux limb lengths on outcome after Roux-en-Y gastric bypass: a prospective, randomized clinical trial. Obes Surg. 2004;12:540–5.

    Article  Google Scholar 

  80. Feng JJ, Gagner M, Pomp A, et al. Effect of standard vs extended Roux limb length on weight loss outcomes after laparoscopic Roux-en-Y gastric bypass. Surg Endosc. 2003;17:1055–60.

    Article  PubMed  CAS  Google Scholar 

  81. Inabnet WB, Quinn T, Gagner M, et al. Laparoscopic Roux-en-Y gastric bypass in patients with BMI <50: a prospective randomized trial comparing short and long limb lengths. Obes Surg. 2005;15:51–7.

    Article  PubMed  Google Scholar 

  82. Orci L, Chilcott M, Huber O. Short versus long Roux-limb length in Roux-en-Y gastric bypass surgery for the treatment of morbid and super obesity: a systematic review of the literature. Obes Surg. 2011;21:797–804.

    Article  PubMed  Google Scholar 

  83. Odstrcil EA, Martinez JG, Santa Ana CA, et al. The contribution of malabsorption to the reduction in net energy absorption after long-limb Roux-en-Y gastric bypass. Am J Clin Nutr. 2010;92:704–13.

    Article  PubMed  CAS  Google Scholar 

  84. Kumar R, Lieske JC, Collazo-Clavell ML, et al. Fat malabsorption and increased intestinal oxalate absorption are common after Roux-en-Y gastric bypass surgery. Surgery. 2011;149:654–61.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Mingrone G, DeGaetano A, Greco AV, et al. Reversibility of insulin resistance in obese diabetic patients: role of plasma lipids. Diabetologia. 1997;40:599–605.

    Article  PubMed  CAS  Google Scholar 

  86. Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–81.

    Article  PubMed  CAS  Google Scholar 

  87. Cummings DE, Overduin J, Foster-Schubert KE. Gastric bypass for obesity: mechanisms of weight loss and diabetes resolution. J Clin Endo Metab. 2004;89:2608–15.

    Article  CAS  Google Scholar 

  88. le Roux CW, Welbourn R, Werling M, et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann Surg. 2007;246:780–5.

    Article  PubMed  Google Scholar 

  89. Tolessa T, Gutniak M, Holst JJ, et al. Inhibitory effect of glucagon-like peptide-1 on small bowel motility. J Clin Invest. 1998;102:764–74.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  90. Tolessa T, Gutniak M, Holst JJ, et al. Glucagon-like peptide-1 retards gastric emptying and small bowel transit in the rat. Dig Dis Sci. 1998;43:2284–90.

    Article  PubMed  CAS  Google Scholar 

  91. O’Brien PE, McPhail T, Chaston TB, et al. Systematic review of medium-term weight loss after bariatric surgery. Obes Surg. 2006;16:1032–40.

    Article  PubMed  Google Scholar 

  92. Olbers T, Bjorkman S, Lindroos A, et al. Body composition, dietary intake and energy expenditure after laparoscopic Roux-en-Y gastric bypass and laparoscopic vertical banded gastroplasty: a randomized clinical trial. Ann Surg. 2006;244:715–22.

    Article  PubMed Central  PubMed  Google Scholar 

  93. Schoeller DA. Limitations in the assessment of dietary energy intake by self-report. Metabolism. 1995;44:18–22.

    Article  PubMed  CAS  Google Scholar 

  94. Lichtman SW, Pisarska K, Berman ER, et al. Discrepancy between self-reported and actual caloric intake and exercise in obese subjects. N Engl J Med. 1992;327:1893–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank B. Murgatroyd for her assistance in clinical recruitment; A. Duffy, C. Stone, T. Gouz, R. Kahar and N. Walsham for their assistance in biochemical analysis; and Professor L. Fandriks, Gastlab, University of Gothenburg, for his helpful comments. This research was funded King’s College Hospital Laparoscopic charitable research fund.

Conflict of Interest

All authors confirm that we have no competing interests to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirstin A. Carswell.

Additional information

Kirstin A. Carswell and Royce P. Vincent are joint first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carswell, K.A., Vincent, R.P., Belgaumkar, A.P. et al. The Effect of Bariatric Surgery on Intestinal Absorption and Transit Time. OBES SURG 24, 796–805 (2014). https://doi.org/10.1007/s11695-013-1166-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-013-1166-x

Keywords

Navigation