Skip to main content

Advertisement

Log in

Noncoding RNAs and Atherosclerosis

  • Genetics (AJ Marian, Section Editor)
  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Noncoding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer and cardiovascular diseases, including atherosclerosis. The best-characterized ncRNAs are the microRNAs which are small, approximately 22-nucleotide sequences of RNA that regulate gene expression at the posttranscriptional level through transcript degradation or translational repression. MicroRNAs control several aspects of atherosclerosis, including endothelial cell, vascular smooth cell, and macrophage functions as well as lipoprotein metabolism. Apart from microRNAs, recently ncRNAs, especially long ncRNAs, have emerged as important potential regulators of the progression of atherosclerosis. However, the molecular mechanism of their regulation and function as well as the significance of other ncRNAs such as small nucleolar RNAs during atherogenesis is largely unknown. In this review, we summarize the recent findings in the field, highlighting the importance of ncRNAs in atherosclerosis and discuss their potential use as therapeutic targets in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carninci P et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559.

    Article  PubMed  CAS  Google Scholar 

  2. Birney E et al. Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature. 2007;447:799.

    Article  PubMed  CAS  Google Scholar 

  3. Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet. 2006;15(Spec No 1):R17.

    Article  PubMed  CAS  Google Scholar 

  4. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861.

    Article  PubMed  CAS  Google Scholar 

  5. Iaconetti C, Gareri C, Polimeni A, Indolfi C. Non-coding RNAs: the "dark matter" of cardiovascular pathophysiology. Int J Mol Sci. 2013;14:19987.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  6. Fire A et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391:806.

    Article  PubMed  CAS  Google Scholar 

  7. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175.

    Article  PubMed  CAS  Google Scholar 

  8. Sayed D, Abdellatif M. MicroRNAs in development and disease. Physiol Rev. 2011;91:827.

    Article  PubMed  CAS  Google Scholar 

  9. Fernandez-Hernando C, Ramirez CM, Goedeke L, Suarez Y. MicroRNAs in metabolic disease. Arterioscler Thromb Vasc Biol. 2013;33:178.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  10. Go AS et al. Heart disease and stroke statistics—2014 update: a report from the American Heart Association. Circulation. 2013. doi:10.1161/01.cir.0000441139.02102.80.

    PubMed Central  Google Scholar 

  11. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104:503.

    Article  PubMed  CAS  Google Scholar 

  12. Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional surprises from the RNA world. Genes Dev. 2009;23:1494.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  13. Djebali S et al. Landscape of transcription in human cells. Nature. 2012;489:101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  14. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5:522.

    Article  PubMed  CAS  Google Scholar 

  15. Mendell JT. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle. 2005;4:1179.

    Article  PubMed  CAS  Google Scholar 

  16. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15.

    Article  PubMed  CAS  Google Scholar 

  17. Rossi JJ. RNAi and the P-body connection. Nat Cell Biol. 2005;7:643.

    Article  PubMed  CAS  Google Scholar 

  18. Faehnle CR, Joshua-Tor L. Argonaute MID domain takes centre stage. EMBO Rep. 2010;11:564.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  19. Krol J, Loedige I, Filipowicz W. The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 2010;11:597.

    PubMed  CAS  Google Scholar 

  20. Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and future. Genetics. 2013;193:651.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  21. Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol. 2013;10:925.

    Article  PubMed  CAS  Google Scholar 

  22. Mercer TR, Dinger ME, Mattick JS. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009;10:155.

    Article  PubMed  CAS  Google Scholar 

  23. Mercer TR, Mattick JS. Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol. 2013;20:300.

    Article  PubMed  CAS  Google Scholar 

  24. Hu W, Yuan B, Flygare J, Lodish HF. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation. Genes Dev. 2011;25:2573.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Leung A et al. Novel long noncoding RNAs are regulated by angiotensin II in vascular smooth muscle cells. Circ Res. 2013;113:266.

    Article  PubMed  CAS  Google Scholar 

  26. Grote P et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24:206.

    Article  PubMed  CAS  Google Scholar 

  27. Wang KC, Chang HY. Molecular mechanisms of long noncoding RNAs. Mol Cell. 2011;43:904.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  28. Tiffany HL, Gao JL, Roffe E, Sechler JM, Murphy PM. Characterization of Fpr-rs8, an atypical member of the mouse formyl peptide receptor gene family. J Innate Immun. 2011;3:519.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  29. Tsai MC et al. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010;329:689.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  30. Rottiers V, Naar AM. MicroRNAs in metabolism and metabolic disorders. Nat Rev Mol Cell Biol. 2012;13:239.

    Article  PubMed  CAS  Google Scholar 

  31. Esau C et al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab. 2006;3:87.

    Article  PubMed  CAS  Google Scholar 

  32. Girard M, Jacquemin E, Munnich A, Lyonnet S, Henrion-Caude A. miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol. 2008;48:648.

    Article  PubMed  CAS  Google Scholar 

  33. Rayner KJ et al. MiR-33 contributes to the regulation of cholesterol homeostasis. Science. 2010;328:1570.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Ramirez CM et al. MicroRNA-758 regulates cholesterol efflux through posttranscriptional repression of ATP-binding cassette transporter A1. Arterioscler Thromb Vasc Biol. 2011;31:2707.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Kim J et al. miR-106b impairs cholesterol efflux and increases Aβ levels by repressing ABCA1 expression. Exp Neurol. 2011;235:476.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  36. Ramirez CM et al. Control of cholesterol metabolism and plasma high-density lipoprotein levels by microRNA-144. Circ Res. 2013;112:1592.

    Article  PubMed  CAS  Google Scholar 

  37. Marquart TJ, Allen RM, Ory DS, Baldan A. miR-33 links SREBP-2 induction to repression of sterol transporters. Proc Natl Acad Sci USA. 2010;107:12228.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Rotllan N, Ramirez CM, Aryal B, Esau CC, Fernandez-Hernando C. Therapeutic silencing of microRNA-33 inhibits the progression of atherosclerosis in Ldlr-/- mice—brief report. Arterioscler Thromb Vasc Biol. 2013;33:1973. This study demonstrate that miR-33 inhibitors has atheroprotective effects independent of raising circulating HDL-C in mice.

  39. Rayner KJ et al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature. 2011;478:404. This was among the first studies to demonstrate the important role of miR-33 in regulating plasma HDL levels and macrophage cholesterol efflux.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Rayner KJ et al. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest. 2011;121:2921. This study demonstrates the efficacy of anti-miR-33 therapy to enhance the regression of atherosclerosis.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  41. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19:892. This article identifies miR-30c as a key regulator of microsomal triglyceride transfer protein. Most importantly, miR-30 overexpression reduces plasma LDL cholesterol levels and atherogenesis in mice.

    Article  PubMed  CAS  Google Scholar 

  42. Harris TA, Yamakuchi M, Ferlito M, Mendell JT, Lowenstein CJ. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105:1516.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Zernecke A et al. Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal. 2009;2:ra81.

    PubMed  Google Scholar 

  44. Zhou J et al. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res. 2013;113:40.

    Article  PubMed  CAS  Google Scholar 

  45. Suarez Y, Wang C, Manes TD, Pober JS. Cutting edge: TNF-induced microRNAs regulate TNF-induced expression of E-selectin and intercellular adhesion molecule-1 on human endothelial cells: feedback control of inflammation. J Immunol. 2010;184:21.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Raitoharju E et al. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis. 2011;219:211.

    Article  PubMed  CAS  Google Scholar 

  47. Ji R et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of microRNA in vascular neointimal lesion formation. Circ Res. 2007;100:1579.

    Article  PubMed  CAS  Google Scholar 

  48. Zhou J et al. MicroRNA-21 targets peroxisome proliferators-activated receptor-α in an autoregulatory loop to modulate flow-induced endothelial inflammation. Proc Natl Acad Sci U S A. 2011;108:10355.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  49. Di Bernardini E et al. Endothelial lineage differentiation from induced pluripotent stem cells is regulated by microRNA-21 and transforming growth factor beta2 (TGF-β2) pathways. J Biol Chem. 2013. 10.1074/jbc.M113.495531.

  50. Fang Y, Shi C, Manduchi E, Civelek M, Davies PF. MicroRNA-10a regulation of proinflammatory phenotype in athero-susceptible endothelium in vivo and in vitro. Proc Natl Acad Sci U S A. 2010;107:13450.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Sun X et al. MicroRNA-181b regulates NF-κB-mediated vascular inflammation. J Clin Invest. 2012;122:1973. This study identified miR-181b as an important regulator of EC inflammation.

    PubMed Central  PubMed  CAS  Google Scholar 

  52. Sun X et al. Systemic delivery of microRNA-181b inhibits nuclear factor-κB activation, vascular inflammation, and atherosclerosis in apolipoprotein E-deficient mice. Circ Res. 2014;114:32.

    Article  PubMed  CAS  Google Scholar 

  53. Cheng HS et al. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol Med. 2013;5:949.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  54. Poliseno L et al. MicroRNAs modulate the angiogenic properties of HUVECs. Blood. 2006;108:3068.

    Article  PubMed  CAS  Google Scholar 

  55. Suarez Y, Fernandez-Hernando C, Pober JS, Sessa WC. Dicer dependent microRNAs regulate gene expression and functions in human endothelial cells. Circ Res. 2007;100:1164.

    Article  PubMed  CAS  Google Scholar 

  56. Zhu N et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis. 2011;215:286.

    Article  PubMed  CAS  Google Scholar 

  57. Dentelli P et al. microRNA-222 controls neovascularization by regulating signal transducer and activator of transcription 5A expression. Arterioscler Thromb Vasc Biol. 2010;30:1562.

    Article  PubMed  CAS  Google Scholar 

  58. Son DJ et al. The atypical mechanosensitive microRNA-712 derived from pre-ribosomal RNA induces endothelial inflammation and atherosclerosis. Nat Commun. 2013;4:3000.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  59. Suarez Y et al. Dicer-dependent endothelial microRNAs are necessary for postnatal angiogenesis. Proc Natl Acad Sci U S A. 2008;105:14082.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Fang Y, Davies PF. Site-specific microRNA-92a regulation of Kruppel-like factors 4 and 2 in atherosusceptible endothelium. Arterioscler Thromb Vasc Biol. 2012;32:979.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  61. Loyer X et al. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circ Res. 2013. doi:10.1161/CIRCRESAHA.114.302213.

    Google Scholar 

  62. Chen WJ, Yin K, Zhao GJ, Fu YC, Tang CK. The magic and mystery of microRNA-27 in atherosclerosis. Atherosclerosis. 2012;222:314.

    Article  PubMed  CAS  Google Scholar 

  63. Kuehbacher A, Urbich C, Zeiher AM, Dimmeler S. Role of Dicer and Drosha for endothelial microRNA expression and angiogenesis. Circ Res. 2007;101:59.

    Article  PubMed  CAS  Google Scholar 

  64. Akhtar N et al. MicroRNA-27b regulates the expression of matrix metalloproteinase 13 in human osteoarthritis chondrocytes. Arthritis Rheum. 2010;62:1361.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  65. Urbich C et al. MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 2012;119:1607.

    Article  PubMed  CAS  Google Scholar 

  66. Kuehbacher A, Urbich C, Dimmeler S. Targeting microRNA expression to regulate angiogenesis. Trends Pharmacol Sci. 2008;29:12.

    Article  PubMed  CAS  Google Scholar 

  67. Menghini R et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation. 2009;120:1524.

    Article  PubMed  CAS  Google Scholar 

  68. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun. 2010;398:735.

    Article  PubMed  CAS  Google Scholar 

  69. Vasa-Nicotera M et al. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis. 2011;217:326.

    Article  PubMed  CAS  Google Scholar 

  70. Wang M et al. MicroRNA-21 regulates vascular smooth muscle cell function via targeting tropomyosin 1 in arteriosclerosis obliterans of lower extremities. Arterioscler Thromb Vasc Biol. 2011;31:2044.

    Article  PubMed  CAS  Google Scholar 

  71. Davis BN, Hilyard AC, Lagna G, Hata A. SMAD proteins control DROSHA-mediated microRNA maturation. Nature. 2008;454:56.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  72. Sarkar J et al. MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration. Am J Physiol Lung Cell Mol Physiol. 2010;299:L861.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  73. Boettger T et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 2009;119:2634.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Cheng Y et al. MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 2009;105:158.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  75. Cordes KR et al. miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 2009;460:705.

    PubMed Central  PubMed  CAS  Google Scholar 

  76. Xin M et al. MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 2009;23:2166.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  77. Quintavalle M, Elia L, Condorelli G, Courtneidge SA. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 2010;189:13.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  78. Qiu LX et al. The association between common genetic variant of microRNA-146a and cancer susceptibility. Cytokine. 2011;56:695.

    Article  PubMed  CAS  Google Scholar 

  79. Chen J et al. Induction of microRNA-1 by myocardin in smooth muscle cells inhibits cell proliferation. Arterioscler Thromb Vasc Biol. 2011;31:368.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  80. Xie C et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2011;20:205.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  81. Torella D et al. MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res. 2011;109:880.

    Article  PubMed  CAS  Google Scholar 

  82. Latronico MV, Catalucci D, Condorelli G. Emerging role of microRNAs in cardiovascular biology. Circ Res. 2007;101:1225.

    Article  PubMed  CAS  Google Scholar 

  83. Zhang P et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels—brief report. Arterioscler Thromb Vasc Biol. 2012;32:756. This article demonstrates that the therapeutic inhibition of miR-29 might be useful for treating elastin-deficiency-associated diseases.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  84. Liu X et al. A necessary role of miR-221 and miR-222 in vascular smooth muscle cell proliferation and neointimal hyperplasia. Circ Res. 2009;104:476.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  85. Davis BN, Hilyard AC, Nguyen PH, Lagna G, Hata A. Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype. J Biol Chem. 2009;284:3728.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  86. Zhang Y et al. Insulin promotes vascular smooth muscle cell proliferation via microRNA-208-mediated downregulation of p21. J Hypertens. 2011;29:1560.

    Article  PubMed  CAS  Google Scholar 

  87. Choe N et al. The microRNA miR-132 targets Lrrfip1 to block vascular smooth muscle cell proliferation and neointimal hyperplasia. Atherosclerosis. 2013;229:348.

    Article  PubMed  CAS  Google Scholar 

  88. Yu ML et al. Vascular smooth muscle cell proliferation is influenced by let-7d microRNA and its interaction with KRAS. Circ J. 2011;75:703.

    Article  PubMed  CAS  Google Scholar 

  89. Chen KC et al. Negative feedback regulation between microRNA let-7 g and the oxLDL receptor LOX-1. J Cell Sci. 2011;124:4115.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang Y, Chen N, Zhang J, Tong Y. Hsa-let-7 g miRNA targets caspase-3 and inhibits the apoptosis induced by ox-LDL in endothelial cells. Int J Mol Sci. 2013;14:22708.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Liao YC et al. Let-7 g improves multiple endothelial functions through targeting TGF-β and SIRT-1 signaling. J Am Coll Cardiol. 2013. doi:10.1016/j.jacc.2013.09.069.

    Google Scholar 

  92. Liao XB et al. MiR-133a modulates osteogenic differentiation of vascular smooth muscle cells. Endocrinology. 2013;154:3344.

    Article  PubMed  CAS  Google Scholar 

  93. Remus EW et al. miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells. Atherosclerosis. 2013;228:168.

    Article  PubMed  CAS  Google Scholar 

  94. Xu J et al. MiR-9 reduces human acyl-coenzyme A:cholesterol acyltransferase-1 to decrease THP-1 macrophage-derived foam cell formation. Acta Biochim Biophys Sin (Shanghai). 2013;45:953.

    Article  CAS  Google Scholar 

  95. Thulin P et al. MicroRNA-9 regulates the expression of peroxisome proliferator-activated receptor δ in human monocytes during the inflammatory response. Int J Mol Med. 2013;31:1003.

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Chen T et al. MicroRNA-125a-5p partly regulates the inflammatory response, lipid uptake, and ORP9 expression in oxLDL-stimulated monocyte/macrophages. Cardiovasc Res. 2009;83:131.

    Article  PubMed  CAS  Google Scholar 

  97. Huang RS, Hu GQ, Lin B, Lin ZY, Sun CC. MicroRNA-155 silencing enhances inflammatory response and lipid uptake in oxidized low-density lipoprotein-stimulated human THP-1 macrophages. J Investig Med. 2010;58:961.

    PubMed  CAS  Google Scholar 

  98. Nazari-Jahantigh M et al. MicroRNA-155 promotes atherosclerosis by repressing Bcl6 in macrophages. J Clin Invest. 2012;122:4190.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Donners MM et al. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One. 2012;7:e35877.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  100. Yang K et al. MiR-146a inhibits oxidized low-density lipoprotein-induced lipid accumulation and inflammatory response via targeting toll-like receptor 4. FEBS Lett. 2011;585:854.

    Article  PubMed  CAS  Google Scholar 

  101. Liu G et al. miR-147, a microRNA that is induced upon Toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA. 2009;106:15819.

    Article  PubMed Central  PubMed  Google Scholar 

  102. Ishii N et al. Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet. 2006;51:1087.

    Article  PubMed  CAS  Google Scholar 

  103. McPherson R et al. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  104. Helgadottir A et al. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491.

    Article  PubMed  CAS  Google Scholar 

  105. Samani NJ et al. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  106. Yap KL et al. Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine 27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell. 2010;38:662.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  107. Kotake Y et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30:1956.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  108. Holdt LM et al. Alu elements in ANRIL non-coding RNA at chromosome 9p21 modulate atherogenic cell functions through trans-regulation of gene networks. PLoS Genet. 2013;9:e1003588.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  109. Bochenek G et al. The large non-coding RNA ANRIL, which is associated with atherosclerosis, periodontitis and several forms of cancer, regulates ADIPOR1, VAMP3 and C11ORF10. Hum Mol Genet. 2013;22:4516.

    Article  PubMed  CAS  Google Scholar 

  110. Robb GB et al. Post-transcriptional regulation of endothelial nitric-oxide synthase by an overlapping antisense mRNA transcript. J Biol Chem. 2004;279:37982.

    Article  PubMed  CAS  Google Scholar 

  111. Fish JE et al. Hypoxia-inducible expression of a natural cis-antisense transcript inhibits endothelial nitric-oxide synthase. J Biol Chem. 2007;282:15652.

    Article  PubMed  CAS  Google Scholar 

  112. Li K et al. A noncoding antisense RNA in tie-1 locus regulates tie-1 function in vivo. Blood. 2010;115:133.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  113. Halley P et al. Regulation of the apolipoprotein gene cluster by a long noncoding RNA. Cell Rep. 2014;6:222.

    Article  PubMed  CAS  Google Scholar 

  114. Lund-Katz S, Phillips MC. High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell Biochem. 2010;51:183.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  115. Carpenter S et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341:789.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Leigh Goedeke for editing of the manuscript. This work was supported by grants from the National Institutes of Health (R01HL107953 and R01HL106063 to C.F.-H.), and from the Ministerio de Educación (Programa Nacional de Movilidad de Recursos Humanos del Plan Nacional de I-D + i 2008-2011 to N. R.). We apologize to those whose work could not be cited owing to space limitations.

Compliance with Ethics Guidelines

Conflict of Interest

Binod Aryal and Noemi Rotllan declare that they have no conflict of interest.

Carlos Fernandez-Hernando has patents on the use of miR-33 inhibitors.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Fernández-Hernando.

Additional information

Binod Aryal and Noemi Rotllan both authors contributed equally to this work

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aryal, B., Rotllan, N. & Fernández-Hernando, C. Noncoding RNAs and Atherosclerosis. Curr Atheroscler Rep 16, 407 (2014). https://doi.org/10.1007/s11883-014-0407-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11883-014-0407-3

Keywords

Navigation