Skip to main content
Log in

Neurocircuitry of anxiety disorders

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

A major focus in the field of anxiety in the past decade, and an area of intense ongoing interest, is the delineation of the basic neurocircuitry underlying normal and pathologic anxiety. Preclinical work defining the basic neurocircuitry responsible for fear responding has fueled neuroimaging investigations attempting to model the neurocircuitry of the anxiety disorders. Herewith, the authors review neuroimaging findings contributing to the development and refinement of neuroanatomic models for post-traumatic stress disorder, panic disorder, and social anxiety disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Davis M: The role of the amygdala in fear and anxiety. Ann Rev Neurosci 1992, 58(suppl):26–28.

    Google Scholar 

  2. LeDoux JE, Iwata J, Cicchetti P, et al.: Different projections of the central amygdaloid nucleus mediate autonomic and behavioral correlates of conditioned fear. J Neurosci 1988, 8:2517–2519.

    PubMed  CAS  Google Scholar 

  3. Rauch SL, Whalen PJ, Curran T, et al.: Probing striato-thalamic function in OCD and TS using neuroimaging methods. In Tourette Syndrome. Edited by Cohen DJ, Jankovic J, Goetz CG. Philadelphia: Lippincott, Williams & Wilkins; 2000. A review of current neurocircuitry models of OCD based on neuroimaging findings.

    Google Scholar 

  4. Fyer AJ: Current approaches to etiology and pathophysiology of specific phobia. Biol Psychiatry 1998, 44:1295–1304.

    Article  PubMed  CAS  Google Scholar 

  5. Rauch SL: Neuroimaging and the neurobiology of anxiety disorders. In Handbook of Affective Sciences. Edited by Davidson RJ, Scherer K, Goldsmith HH. New York: Oxford University Press; 2003:963–975.

    Google Scholar 

  6. LeDoux JE, Cicchetti P, Xagoraris A, et al.: The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci 1990, 10:1062–1069.

    PubMed  CAS  Google Scholar 

  7. Aggleton JP: The Amygdala: Neurobiological Aspects of Emotion, Memory and Mental Dysfunction. New York: Wiley-Liss; 1992.

    Google Scholar 

  8. LeDoux JE: The Emotional Brain. New York: Simon and Schuster; 1996.

    Google Scholar 

  9. Jones DK, Simmons A, Williams SC, Horsfield MA: Noninvasive assessment of axonal fiber connectivity in the human brain via diffusion tensor MRI. Magn Reson Med 1999, 42:37–41.

    Article  PubMed  CAS  Google Scholar 

  10. Sato T, Hasan K, Alexander AL, Minato K: Structural connectivity in white matter using the projected diffusion-tensor distance. Medinfo 2001, 10:929–932.

    PubMed  CAS  Google Scholar 

  11. Makris N, Rauch SL, Kennedy DN: Diffusion imaging: Principles, methods, and applications. CNS Spectrums 2002, 7:486–546.

    Google Scholar 

  12. Rauch SL, Shin LM, Whalen PJ, Pitman RK: Neuroimaging and the neuroanatomy of PTSD. CNS Spectrums 1998, 3(suppl):30–41.

    Google Scholar 

  13. Whalen PJ, Bush G, McNally RJ, et al.: The Emotional Counting Stroop paradigm: an fMRI probe of the anterior cingulate affective division. Biol Psychiatry 1998, 44:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  14. Cameron HA, Hazel TG, McKay RD: Regulation of neurogenesis by growth factors and neurotransmitters. J Neurobiol 1998, 36:287–306.

    Article  PubMed  CAS  Google Scholar 

  15. Sapolsky R: Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 2000, 57:825–835.

    Article  Google Scholar 

  16. Bremner JD, Randall P, Scott TM, et al.: MRI-based measurement of hippocampal volume in patients with combatrelated posttraumatic stress disorder. Am J Psychiatry 1995, 152:973–981.

    PubMed  CAS  Google Scholar 

  17. Gurvits TV, Shenton ME, Hokama H, et al.: Magnetic resonance imaging study of hippocampal volume in chronic, combatrelated posttraumatic stress disorder. Biol Psychiatry 1996, 40:1091–1099.

    Article  PubMed  CAS  Google Scholar 

  18. De Bellis MD, Keshavan MS, Clark DB et al.: Developmental traumatology, part II: brain development. Biol Psychiatry 1999, 45:1271–1284.

    Article  PubMed  Google Scholar 

  19. De Bellis MD, Hall J, Boring AM, et al.: A pilot longitudinal study of hippocampal volumes in pediatric maltreatmentrelated posttraumatic stress disorder. Biol Psychiatry 2001, 50:305–309.

    Article  PubMed  Google Scholar 

  20. Carrion VG, Weems CF, Eliez S, et al.: Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biol Psychiatry 2001, 50:943–951.

    Article  PubMed  CAS  Google Scholar 

  21. De Bellis MD, Keshavan MS, Frustaci K, et al.: Superior temporal gyrus volumes in maltreated children and adolescents with PTSD. Biol Psychiatry 2002, 51:544–552.

    Article  PubMed  Google Scholar 

  22. Bremner JD, Randall P, Vermetten E, et al.: Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse: a preliminary report. Biol Psychiatry 1997, 41:23–32.

    Article  PubMed  CAS  Google Scholar 

  23. Stein MB, Koverola C, Hanna C, et al.: Hippocampal volume in women victimized by childhood sexual abuse. Psychol Med 1997, 27:951–960.

    Article  PubMed  CAS  Google Scholar 

  24. Driessen M, Herrmann J, Stahl K, et al.: Magnetic resonance imaging volumes of the hippocampus and amygdala in women with borderline personality disorder and early traumatization. Arch Gen Psychiatry 2000, 57:1115–1122.

    Article  PubMed  CAS  Google Scholar 

  25. Villarreal G, Hamilton DA, Petropoulos H, et al.: Reduced hippocampal volume and total white matter volume in posttraumatic stress disorder. Biol Psychiatry 2002:52:119–125. An mMRI study demonstrating reduced bilateral hippocampal volumes in patients with PTSD after correcting for intracranial volume.

    Article  PubMed  Google Scholar 

  26. Bonne O, Brandes D, Gilboa A, et al.: Longitudinal MRI study of hippocampal volume in trauma survivors with PTSD. Am J Psychiatry 2001, 158:1248–1251.

    Article  PubMed  CAS  Google Scholar 

  27. Gilbertson MW, Shenton ME, Ciszewski A, et al.: Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat Neurosci 2002, 5:1242–1247. Results of this mMRI study of adult male monozygotic twins discordant for combat exposure indicate that smaller hippocampal volumes may represent a risk factor for developing PTSD, rather than evolving as a consequence of the trauma exposure.

    Article  PubMed  CAS  Google Scholar 

  28. Rauch SL, Shin LM, Segal E, et al.: Selectively reduced regional cortical volumes in posttraumatic stress disorder. Neuroreport 2003, in press.

  29. Semple WE, Goyer P, McCormick R, et al.: Preliminary report: brain blood flow using PET in patients with posttraumatic stress disorder and substance-abuse histories. Biol Psychiatry 1993, 34:115–118.

    Article  PubMed  CAS  Google Scholar 

  30. Rauch SL, van der Kolk BA, Fisler RE, et al.: A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Arch Gen Psychiatry 1996, 53:380–387.

    PubMed  CAS  Google Scholar 

  31. Sachinvala N, Kling A, Suffin S, et al.: Increased regional cerebral perfusion by 99mTc hexamethyl propylene amine oxime single photon emission computed tomography in post-traumatic stress disorder. Mil Med 2000, 165:473–479.

    PubMed  CAS  Google Scholar 

  32. Semple WE, Goyer PF, McCormick R, et al.: Higher brain blood flow at amygdala and lower frontal cortex blood flow in PTSD patients with comorbid cocaine and alcohol abuse compared with normals. Psychiatry 2000, 63:65–74.

    PubMed  CAS  Google Scholar 

  33. Shin LM, Kosslyn SM, McNally RJ, et al.: Visual imagery and perception in posttraumatic stress disorder: a positron emission tomographic investigation. Arch Gen Psychiatry 1997, 54:233–241.

    PubMed  CAS  Google Scholar 

  34. Rauch SL, Whalen PJ, Shin LM, et al.: Exaggerated amygdala response to masked facial stimuli in posttraumatic stress disorder: a functional MRI study. Biol Psychiatry 2000, 47:769–776.

    Article  PubMed  CAS  Google Scholar 

  35. Pissiota A, Frans O, Fernandez M, et al.: Neurofunctional correlates of posttraumatic stress disorder: a PET symptom provocation study. Eur Arch Psychiatry Clin Neurosci 2002, 252:68–75.

    Article  PubMed  Google Scholar 

  36. Bremner JD, Narayan M, Staib LH, et al.: Neural correlates of memories of childhood sexual abuse in women with and without posttraumatic stress disorder. Am J Psychiatry 1999, 156:1787–1795.

    PubMed  CAS  Google Scholar 

  37. Bremner JD, Staib LH, Kaloupek D, et al.: Neural correlates of exposure to traumatic pictures and sound in Vietnam combat veterans with and without posttraumatic stress disorder: a positron emission tomography study. Biol Psychiatry 1999, 45:806–816.

    Article  PubMed  CAS  Google Scholar 

  38. Shin LM, McNally RJ, Kosslyn SM, et al.: Regional cerebral blood flow during script-driven imagery in childhood sexual abuse-related posttraumatic stress disorder: a PET investigation. Am J Psychiatry 1999, 156:575–584.

    PubMed  CAS  Google Scholar 

  39. Shin LM, Whalen PJ, Pitman RK, et al.: An fMRI study of anterior cingulate function in posttraumatic stress disorder. Biol Psychiatry 2001, 50:932–942. Using a specific cognitive task known to recruit anterior cingulate, the investigators demonstrated abnormal anterior cingulate recruitment in the PTSD compared with the normal control group. This study demonstrates how cognitive tasks, which reliably recruit specific brain regions, can be used to test hypotheses regarding neurocircuitry in clinical anxiety samples.

    Article  PubMed  CAS  Google Scholar 

  40. Liberzon I, Taylor SF, Amdur R, et al.: Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry 1999, 45:817–826.

    Article  PubMed  CAS  Google Scholar 

  41. Whalen PJ, Bush G, McNally RJ, et al.: The Emotional Counting Stroop paradigm: an fMRI probe of the anterior cingulate affective division. Biol Psychiatry 1998, 44:1219–1228.

    Article  PubMed  CAS  Google Scholar 

  42. Lanius RA, Williamson PC, Densmore M, et al.: Neural correlates of traumatic memories in posttraumatic stress disorder: a functional MRI investigation. Am J Psychiatry 2001, 158:1920–1922.

    Article  PubMed  CAS  Google Scholar 

  43. Osuch EA, Benson B, Geraci M, et al.: Regional cerebral blood flow correlated with flashback intensity in patients with posttraumatic stress disorder. Biol Psychiatry 2001, 50:246–253.

    Article  PubMed  CAS  Google Scholar 

  44. Lanius RA, Williamson PC, Boksman K, et al.: Brain activation during script-driven imagery induced dissociative responses in PTSD: a functional magnetic imaging investigation. Biol Psychiatry 2002, 52:305–311.

    Article  PubMed  Google Scholar 

  45. Clark RC, McFarlane AC, Morris P, et al.: Cerebral function in posttraumatic stress disorder during verbal working memory updating: a positron emission tomography study. Biol Psychiatry 2003, 53:474–481.

    Article  PubMed  Google Scholar 

  46. Fontaine R, Breton G, Dery R, et al.: Temporal lobe abnormalities in panic disorder: an MRI study. Biol Psychiatry 1990, 27:304–310.

    Article  PubMed  CAS  Google Scholar 

  47. Vythilingam M, Anderson ER, Goddard A, et al.: Temporal lobe volume in panic disorder: a quantitative magnetic resonance imaging study. Psychiatry Res 2000, 99:75–82.

    Article  PubMed  CAS  Google Scholar 

  48. Massana G, Serra-Grabulosa JM, Salgado-Pineda P, et al.: Parahippocampal gray matter density in panic disorder: a voxel-based morphometric study. Am J Psychiatry 2003, 160:566–568. This recent morphometric study identified reduced parahippocampal gray matter density in patients with PD compared with healthy control individuals. This finding adds to the growing literature suggesting structural and functional parahippocampal-hippocampal abnormalities in PD.

    Article  PubMed  Google Scholar 

  49. Reiman EM, Raichle ME, Robins E, et al.: The application of positron emission tomography to the study of panic disorder. Am J Psychiatry 1986, 143:469–477.

    PubMed  CAS  Google Scholar 

  50. Nordahl TE, Semple WE, Gross M, et al.: Cerebral glucose metabolic differences in patients with panic disorder. Neuropsychopharmacology 1990, 3:261–272.

    PubMed  CAS  Google Scholar 

  51. Nordahl TE, Stein MB, Benkelfat C, et al.: Regional cerebral metabolic asymmetries replicated in an independent group of patients with panic disorder. Biol Psychiatry 1998, 44:998–1006.

    Article  PubMed  CAS  Google Scholar 

  52. De Cristofaro MT, Sessarego A, Pupi A, et al.: Brain perfusion abnormalities in drug-naive, lactate-sensitive panic patients: a SPECT study. Biol Psychiatry 1993, 33:505–512.

    Article  PubMed  Google Scholar 

  53. Bisaga A, Katz JL, Antonini A, et al.: Cerebral glucose metabolism in women with panic disorder. Am J Psychiatry 1998, 155:1178–1183.

    PubMed  CAS  Google Scholar 

  54. Boshuisen ML, Ter Horst GJ, Paans AMJ, et al.: rCBF differences between panic disorder patients and control subjects during anticipatory anxiety and rest. Biol Psychiatry 2002, 52:126–135.

    Article  PubMed  Google Scholar 

  55. Stewart RS, Devous MD Sr, Rush AJ, et al.: Cerebral blood flow changes during sodium-lactate-induced panic attacks. Am J Psychiatry 1988, 145:442–449.

    PubMed  CAS  Google Scholar 

  56. Boles Ponto LL, Kathol RG, Kettelkamp R, et al.: Global cerebral blood flow after CO2 inhalation in normal subjects and patients with panic disorder determined with [15O]water and PET. J Anxiety Disorders 2002, 16:247–258.

    Article  Google Scholar 

  57. Woods SW, Koster K, Krystal JK, et al.: Yohimbine alters regional cerebral blood flow in panic disorder. Lancet 1988, 2:678.

    Article  PubMed  CAS  Google Scholar 

  58. Reiman EM, Raichle ME, Robins E, et al.: Neuroanatomical correlates of a lactate-induced anxiety attack. Arch Gen Psychiatry 1989;46:493–500.

    PubMed  CAS  Google Scholar 

  59. Bystritsky A, Pontillo D, Powers M, et al.: Functional MRI changes during panic anticipation and imagery exposure. Neuroreport 2001, 12:3953–3957.

    Article  PubMed  CAS  Google Scholar 

  60. Stein MB: Neurobiological perspectives on social phobia: from affiliation to zoology. Biol Psychiatry 1998, 44:1277–1285.

    Article  PubMed  CAS  Google Scholar 

  61. Mathew SJ, Coplan JD, Gorman JM: Neurobiological mechanisms of social anxiety disorder. Am J Psychiatry 2001, 158:1558–1567.

    Article  PubMed  CAS  Google Scholar 

  62. Potts NL, Davidson JR, Krishnan KR, Doraiswamy PM: Magnetic resonance imaging in social phobia. Psychiatry Res 1994, 52:35–42.

    Article  PubMed  CAS  Google Scholar 

  63. Stein MB, Leslie WD: A brain SPECT study of generalized social phobia. Biol Psychiatry 1996, 39:825–828.

    Article  PubMed  CAS  Google Scholar 

  64. Birbaumer N, Grodd W, Diedrich O, et al.: fMRI reveals amygdala activation to human faces in social phobics. Neuroreport 1998, 9:1223–1226.

    Article  PubMed  CAS  Google Scholar 

  65. Schneider F, Weiss U, Kessler C, et al.: Subcortical correlates of differential classical conditioning of aversive emotional reactions in social phobia. Biol Psychiatry 1999, 45:863–871.

    Article  PubMed  CAS  Google Scholar 

  66. Veit R, Flor H, Erb M, et al.: Brain circuits involved in emotional learning in antisocial behavior and social phobia in humans. Neurosci Let 2002, 328;233–236.

    Article  CAS  Google Scholar 

  67. Tillfors M, Furmark T, Marteinsdottir I, et al.: Cerebral blood flow in subjects with social phobia during stressful speaking tasks: a PET study. Am J Psychiatry 2001, 158:1220–1226.

    Article  PubMed  CAS  Google Scholar 

  68. Van der Linden G, van Heerden B, Warwick J, et al.: Functional brain imaging and pharmacotherapy in social phobia: single photon emission computed tomography before and after treatment with the selective serotonin reuptake inhibitor citalopram. Prog Neuro-Psychopharmacol Biol Psychiat 2000, 24:419–438.

    Article  Google Scholar 

  69. Furmark T, Tillfors M, Marteinsdottir I, et al.: Common changes in cerebral blood flow in patients with social phobia treated with citalopram or cognitive-behavioral therapy. Arch Gen Psychiatry 2002, 59:425–433. Results of this study suggest that heightened amygdala activity in response to the stress of public speaking can be reduced by treatment with a selective serotonin reuptake inhibitor or CBT. This suggests that modulation of the fear neurocircuitry as a result of successful treatment may not be dependent on treatment modality.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kent, J.M., Rauch, S.L. Neurocircuitry of anxiety disorders. Curr Psychiatry Rep 5, 266–273 (2003). https://doi.org/10.1007/s11920-003-0055-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-003-0055-8

Keywords

Navigation