Skip to main content
Log in

Differential roles for the inositol phosphatase SHIP in the regulation of macrophages and lymphocytes

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The SH2 domain-containing inositol 5′-phosphatase (SHIP) negatively regulates antigen, cytokine, and Fc receptor signaling pathways in immune cells. Our knowledge of the function of SHIP largely derives from in vitro studies that utilized SHIP-deficient cell lines and immune cells isolated from SHIP null mice. To avoid the pleiotropic effects observed in mice with germline deletion of SHIP, we have used the Cre-lox system to generate SHIP conditional knockout mice with deletion in specific immune cell populations. In this review we summarize our observations from mice with deletion of SHIP in lymphocyte and macrophage lineages and contrast them with earlier data gathered by the analysis of SHIP null mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ono M, Bolland S, Tempst P, Ravetch JV. Role of the inositol phosphatase SHIP in negative regulation of the immune system by the receptor Fc(gamma)RIIB. Nature. 1996;383:263–6.

    Article  PubMed  CAS  Google Scholar 

  2. Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM. Structure, function, and biology of SHIP proteins. Genes Dev. 2000;14:505–20.

    PubMed  CAS  Google Scholar 

  3. Rauh MJ, Kalesnikoff J, Hughes M, Sly L, Lam V, Krystal G. Role of Src homology 2-containing-inositol 5’-phosphatase (SHIP) in mast cells and macrophages. Biochem Soc Trans. 2003;31:286–91.

    Article  PubMed  CAS  Google Scholar 

  4. Kalesnikoff J, Sly LM, Hughes MR, Buchse T, Rauh MJ, Cao LP, et al. The role of SHIP in cytokine-induced signaling. Rev Physiol Biochem Pharmacol. 2003;149:87–103.

    Article  PubMed  CAS  Google Scholar 

  5. Parihar R, Trotta R, Roda JM, Ferketich AK, Tridandapani S, Caligiuri MA, et al. Src homology 2-containing inositol 5’-phosphatase 1 negatively regulates IFN-gamma production by natural killer cells stimulated with antibody-coated tumor cells and interleukin-12. Cancer Res. 2005;65:9099–107.

    Article  PubMed  CAS  Google Scholar 

  6. Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, et al. The 145-kDa protein induced to associate with Shc by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3, 4, 5-triphosphate 5-phosphatase. Proc Natl Acad Sci USA. 1996;93:1689–93.

    Article  PubMed  CAS  Google Scholar 

  7. Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR. p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev. 1996;10:1084–95.

    Article  PubMed  CAS  Google Scholar 

  8. Bolland S, Pearse RN, Kurosaki T, Ravetch JV. SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity. 1998;8:509–16.

    Article  PubMed  CAS  Google Scholar 

  9. Okada H, Bolland S, Hashimoto A, Kurosaki M, Kabuyama Y, Iino M, et al. Role of the inositol phosphatase SHIP in B cell receptor-induced Ca2+ oscillatory response. J Immunol. 1998;161:5129–32.

    PubMed  CAS  Google Scholar 

  10. Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, Bouchard D, Jones J, Sarao R, et al. The inositol polyphosphate 5-phosphatase ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med. 1998;188:1333–42.

    Article  PubMed  CAS  Google Scholar 

  11. Edmunds C, Parry RV, Burgess SJ, Reaves B, Ward SG. CD28 stimulates tyrosine phosphorylation, cellular redistribution and catalytic activity of the inositol lipid 5-phosphatase SHIP. Eur J Immunol. 1999;29:3507–15.

    Article  PubMed  CAS  Google Scholar 

  12. Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG. Evidence that SHIP-1 contributes to phosphatidylinositol 3, 4, 5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol. 2002;169:5441–50.

    PubMed  CAS  Google Scholar 

  13. Sly LM, Rauh MJ, Kalesnikoff J, Song CH, Krystal G. LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity. 2004;21:227–39.

    Article  PubMed  CAS  Google Scholar 

  14. Huber M, Helgason CD, Damen JE, Scheid MP, Duronio V, Lam V, et al. The role of the SRC homology 2-containing inositol 5’-phosphatase in Fc epsilon R1-induced signaling. Curr Top Microbiol Immunol. 1999;244:29–41.

    PubMed  CAS  Google Scholar 

  15. Kimura T, Sakamoto H, Appella E, Siraganian RP. The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated beta subunit of the high affinity IgE receptor. J Biol Chem. 1997;272:13991–6.

    Article  PubMed  CAS  Google Scholar 

  16. Tridandapani S, Pradhan M, LaDine JR, Garber S, Anderson CL, Coggeshall KM. Protein interactions of Src homology 2 (SH2) domain-containing inositol phosphatase (SHIP): association with Shc displaces SHIP from FcgammaRIIb in B cells. J Immunol. 1999;162:1408–14.

    PubMed  CAS  Google Scholar 

  17. Tridandapani S, Kelley T, Pradhan M, Cooney D, Justement LB, Coggeshall KM. Recruitment and phosphorylation of SH2-containing inositol phosphatase and Shc to the B-cell Fc gamma immunoreceptor tyrosine-based inhibition motif peptide motif. Mol Cell Biol. 1997;17:4305–11.

    PubMed  CAS  Google Scholar 

  18. Osborne MA, Zenner G, Lubinus M, Zhang X, Songyang Z, Cantley LC, et al. The inositol 5’-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem. 1996;271:29271–8.

    Article  PubMed  CAS  Google Scholar 

  19. Huber M, Helgason CD, Damen JE, Scheid M, Duronio V, Liu L, et al. The role of SHIP in growth factor induced signalling. Prog Biophys Mol Biol. 1999;71:423–34.

    Article  PubMed  CAS  Google Scholar 

  20. Scharenberg AM, El-Hillal O, Fruman DA, Beitz LO, Li Z, Lin S, et al. Phosphatidylinositol-3, 4, 5-trisphosphate (PtdIns-3, 4, 5–P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 1998;17:1961–72.

    Article  PubMed  CAS  Google Scholar 

  21. Carver DJ, Aman MJ, Ravichandran KS. SHIP inhibits Akt activation in B cells through regulation of Akt membrane localization. Blood. 2000;96:1449–56.

    PubMed  CAS  Google Scholar 

  22. Galandrini R, Tassi I, Mattia G, Lenti L, Piccoli M, Frati L, et al. SH2-containing inositol phosphatase (SHIP-1) transiently translocates to raft domains and modulates CD16-mediated cytotoxicity in human NK cells. Blood. 2002;100:4581–9.

    Article  PubMed  CAS  Google Scholar 

  23. Krystal G, Damen JE, Helgason CD, Huber M, Hughes MR, Kalesnikoff J, et al. SHIPs ahoy. Int J Biochem Cell Biol. 1999;31:1007–10.

    Article  PubMed  CAS  Google Scholar 

  24. Ono M, Okada H, Bolland S, Yanagi S, Kurosaki T, Ravetch JV. Deletion of SHIP or SHP-1 reveals two distinct pathways for inhibitory signaling. Cell. 1997;90:293–301.

    Article  PubMed  CAS  Google Scholar 

  25. Hashimoto A, Hirose K, Okada H, Kurosaki T, Iino M. Inhibitory modulation of B cell receptor-mediated Ca2+ mobilization by Src homology 2 domain-containing inositol 5’-phosphatase (SHIP). J Biol Chem. 1999;274:11203–8.

    Article  PubMed  CAS  Google Scholar 

  26. March ME, Lucas DM, Aman MJ, Ravichandran KS. p135 src homology 2 domain-containing inositol 5’-phosphatase (SHIPbeta) isoform can substitute for p145 SHIP in fcgamma RIIB1-mediated inhibitory signaling in B cells. J Biol Chem. 2000;275:29960–7.

    Article  PubMed  CAS  Google Scholar 

  27. Aman MJ, Walk SF, March ME, Su HP, Carver DJ, Ravichandran KS. Essential role for the C-terminal noncatalytic region of SHIP in FcgammaRIIB1-mediated inhibitory signaling. Mol Cell Biol. 2000;20:3576–89.

    Article  PubMed  CAS  Google Scholar 

  28. Tomlinson MG, Heath VL, Turck CW, Watson SP, Weiss A. SHIP family inositol phosphatases interact with and negatively regulate the Tec tyrosine kinase. J Biol Chem. 2004;279:55089–96.

    Article  PubMed  CAS  Google Scholar 

  29. Dong S, Corre B, Foulon E, Dufour E, Veillette A, Acuto O, et al. T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J Exp Med. 2006;203:2509–18.

    Article  PubMed  CAS  Google Scholar 

  30. Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, et al. Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev. 1998;12:1610–20.

    Article  PubMed  CAS  Google Scholar 

  31. Nakamura K, Malykhin A, Coggeshall KM. The Src homology 2 domain-containing inositol 5-phosphatase negatively regulates Fcgamma receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood. 2002;100:3374–82.

    Article  PubMed  CAS  Google Scholar 

  32. Huber M, Helgason CD, Damen JE, Liu L, Humphries RK, Krystal G. The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc Natl Acad Sci USA. 1998;95:11330–5.

    Article  PubMed  CAS  Google Scholar 

  33. Brauweiler A, Tamir I, Marschner S, Helgason CD, Cambier JC. Partially distinct molecular mechanisms mediate inhibitory FcgammaRIIB signaling in resting and activated B cells. J Immunol. 2001;167:204–11.

    PubMed  CAS  Google Scholar 

  34. Neill L, Tien AH, Rey-Ladino J, Helgason CD. SHIP-deficient mice provide insights into the regulation of dendritic cell development and function. Exp Hematol. 2007;35:627–39.

    Article  PubMed  CAS  Google Scholar 

  35. Wahle JA, Paraiso KH, Kendig RD, Lawrence HR, Chen L, Wu J, et al. Inappropriate recruitment and activity by the Src homology region 2 domain-containing phosphatase 1 (SHP1) is responsible for receptor dominance in the SHIP-deficient NK cell. J Immunol. 2007;179:8009–15.

    PubMed  CAS  Google Scholar 

  36. Loy AL, Goodnow CC. Novel approaches for identifying genes regulating lymphocyte development and function. Curr Opin Immunol. 2002;14:260–5.

    Article  PubMed  CAS  Google Scholar 

  37. Karlsson MC, Guinamard R, Bolland S, Sankala M, Steinman RM, Ravetch JV. Macrophages control the retention and trafficking of B lymphocytes in the splenic marginal zone. J Exp Med. 2003;198:333–40.

    Article  PubMed  CAS  Google Scholar 

  38. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity. 2001;15:763–74.

    Article  PubMed  CAS  Google Scholar 

  39. Tarasenko T, Kole HK, Chi AW, Mentink-Kane MM, Wynn TA, Bolland S. T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc Natl Acad Sci USA. 2007;104:11382–7.

    Article  PubMed  CAS  Google Scholar 

  40. Kashiwada M, Cattoretti G, McKeag L, Rouse T, Showalter BM, Al-Alem U, et al. Downstream of tyrosine kinases-1 and Src homology 2-containing inositol 5’-phosphatase are required for regulation of CD4+CD25+ T cell development. J Immunol. 2006;176:3958–65.

    PubMed  CAS  Google Scholar 

  41. Ramana CV, Gil MP, Schreiber RD, Stark GR. Stat1-dependent and -independent pathways in IFN-gamma-dependent signaling. Trends Immunol. 2002;23:96–101.

    Article  PubMed  CAS  Google Scholar 

  42. Lighvani AA, Frucht DM, Jankovic D, Yamane H, Aliberti J, Hissong BD, et al. T-bet is rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci USA. 2001;98:15137–42.

    Article  PubMed  CAS  Google Scholar 

  43. Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc Natl Acad Sci USA. 2003;100:15818–23.

    Article  PubMed  CAS  Google Scholar 

  44. Helgason CD, Kalberer CP, Damen JE, Chappel SM, Pineault N, Krystal G, et al. A dual role for Src homology 2 domain-containing inositol-5-phosphatase (SHIP) in immunity: aberrant development and enhanced function of b lymphocytes in ship −/− mice. J Exp Med. 2000;191:781–94.

    Article  PubMed  CAS  Google Scholar 

  45. Rickert RC, Roes J, Rajewsky K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 1997;25:1317–8.

    Article  PubMed  CAS  Google Scholar 

  46. Nakamura K, Kouro T, Kincade PW, Malykhin A, Maeda K, Coggeshall KM. Src homology 2-containing 5-inositol phosphatase (SHIP) suppresses an early stage of lymphoid cell development through elevated interleukin-6 production by myeloid cells in bone marrow. J Exp Med. 2004;199:243–54.

    Article  PubMed  CAS  Google Scholar 

  47. Nitschke L, Carsetti R, Ocker B, Kohler G, Lamers MC. CD22 is a negative regulator of B-cell receptor signalling. Curr Biol. 1997;7:133–43.

    Article  PubMed  CAS  Google Scholar 

  48. Poe JC, Fujimoto M, Jansen PJ, Miller AS, Tedder TF. CD22 forms a quaternary complex with SHIP, Grb2, and Shc. A pathway for regulation of B lymphocyte antigen receptor-induced calcium flux. J Biol Chem. 2000;275:17420–7.

    Article  PubMed  CAS  Google Scholar 

  49. Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol. 1997;27:2366–74.

    Article  PubMed  CAS  Google Scholar 

  50. Garcia de Vinuesa C, O’Leary P, Sze DM, Toellner KM, MacLennan IC. T-independent type 2 antigens induce B cell proliferation in multiple splenic sites, but exponential growth is confined to extrafollicular foci. Eur J Immunol. 1999;29:1314–23.

    Article  PubMed  CAS  Google Scholar 

  51. Guinamard R, Okigaki M, Schlessinger J, Ravetch JV. Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response. Nat Immunol. 2000;1:31–6.

    Article  PubMed  CAS  Google Scholar 

  52. Martin F, Oliver AM, Kearney JF. Marginal zone and B1 B cells unite in the early response against T-independent blood-borne particulate antigens. Immunity. 2001;14:617–29.

    Article  PubMed  CAS  Google Scholar 

  53. Ghansah T, Paraiso KHT, Highfill S, Desponts C, May S, McIntosh JK, et al. Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. J Immunol. 2004;173:7324–30.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was funded by the NIH intramural research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Bolland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leung, WH., Tarasenko, T. & Bolland, S. Differential roles for the inositol phosphatase SHIP in the regulation of macrophages and lymphocytes. Immunol Res 43, 243–251 (2009). https://doi.org/10.1007/s12026-008-8078-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8078-1

Keywords

Navigation