Skip to main content

Advertisement

Log in

Review: Is lung inflammation associated with microbes and microbial toxins in cigarette tobacco smoke?

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Chronic inflammation that has been observed for malignant and non-neoplastic lung diseases of smokers has been attributed to the numerous and diverse particulate (‘tar’)-phase and gas-phase chemicals in mainstream smoke, most of which arise from the burning of tobacco. The primary cell-mediator of lung inflammation is the macrophage. Most probably, inflammation is promoted also from some of the more than 50 other cell types of the lung. Cured tobacco in diverse types of cigarettes is known to harbor a plethora of bacteria (Gram-positive and Gram-negative), fungi (mold, yeast), spores, and is rich in endotoxin (lipopolysaccharide). Reviewed herein are recent observations of the authors’ team and other investigators that support the hypothesis that lung inflammation of long-term smokers may be attributed in part to tobacco-associated bacterial and fungal components that have been identified in tobacco and tobacco smoke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. WHO Report on the Global Tobacco Epidemic. The MPOWER package. Geneva: World Health Organization; 2008. 329 pp.

    Google Scholar 

  2. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed  CAS  Google Scholar 

  3. Lawrence T. Inflammation and cancer: a failure of resolution. Trends Pharmacol Sci. 2007;28:162–5.

    Article  PubMed  CAS  Google Scholar 

  4. International Agency for Research on Cancer (IARC). Overall evaluation of carcinogenicity to humans. http://monographs.iarc.fr/ENG/Classification/index.php. Retrieved on 18 May 2009.

  5. van der Vaart H, Postma DS, Timens W, Ten Hacken NHT. Acute effects of cigarette smoke on inflammation and oxidative stress: a review. Thorax. 2004;59:713–21.

    Article  PubMed  Google Scholar 

  6. Tzortzaki EG, Lambiri I, Vlachaki E, Siafakas NM. Biomarkers in COPD. Curr Med Chem. 2007;14:1037–48.

    Article  PubMed  CAS  Google Scholar 

  7. Yanbaeva DG, Dentener MA, Creutzberg EC, Wesseling G, Wouters EF. Systemic effects of smoking. Chest. 2007;131:1557–66.

    Article  PubMed  CAS  Google Scholar 

  8. Azad N, Rojanasakul Y, Vallyathan V. Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health B Crit Rev. 2008;11:1–15.

    PubMed  CAS  Google Scholar 

  9. Stämpfli MR, Anderson GP. How cigarette smoke skews immune response to promote infection, lung diseases and cancer. Nat Rev Immunol. 2009;9:377–84.

    Article  PubMed  CAS  Google Scholar 

  10. D’hulst AI, Vermaelen KY, Brusselle GG, Joos GF, Pauwels RA. Time course of cigarette smoke-induced pulmonary inflammation in mice. Eur Respir J. 2005;26:204–13.

    Article  PubMed  CAS  Google Scholar 

  11. Kulkarni GS, Nadkarni PP, Cerreta JM, Ma S, Cantor JO. Short-term cigarette smoke exposure potentiates endotoxin-induced pulmonary inflammation. Exp Lung Res. 2007;33:1–13.

    Article  PubMed  Google Scholar 

  12. Holt GP, Bartholomaeus WK, Keast D. Differential toxicity of tobacco smoke to various cell types including those of the immune system. Aust J Exp Biol Med Sci. 1974;52:211–2114.

    Article  PubMed  CAS  Google Scholar 

  13. Barnes PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol. 2008;8:183–92.

    Article  PubMed  CAS  Google Scholar 

  14. Spori M. Effects of cigarette smoke on the immune system. Nat Rev Immunol. 2002;2:272–3.

    Google Scholar 

  15. Karimi K, Sarir H, Mortaz E, Smit JJ, Hosseini H, De Kimpe SJ, et al. Toll-like receptor-4 mediates cigarette smoke-induced cytokine production by human macrophages. Respir Res. 2006;7:66.

    Article  PubMed  CAS  Google Scholar 

  16. Birrell MA, Wong S, Catley MC, Belvisi MG. Impact of tobacco-smoke on key signaling pathways in the innate immune response in lung macrophages. J Cell Physiol. 2008;214:27–37.

    Article  PubMed  CAS  Google Scholar 

  17. Streck RJ, Jezewski HM, Rodriquez MI, Hurley EL, Rich GA, Pauly JL. A method for isolating human lung macrophages and observations of autofluorescent phagocytes from the lungs of cigarette smokers. J Immunol Methods. 1994;174:67–82.

    Article  PubMed  CAS  Google Scholar 

  18. Pauly JL, Allison EA, Hurley EL, Nwogu CE, Wallace PK, Paszkiewicz GM. Fluorescent human lung macrophages analyzed by spectral confocal laser scanning microscopy and multispectral cytometry. Microsc Res Tech. 2005;67:79–89.

    Article  PubMed  Google Scholar 

  19. Rodgman A, Perfetti TA. The chemical components of tobacco and tobacco smoke. Boca Raton: CRC Press; 2009. 1784 pp.

    Google Scholar 

  20. Baker RR. Smoke chemistry. In: Davis DL, Nielsen MT, editors. Tobacco—production, chemistry and technology. Oxford: Blackwel; 1999. p. 398–439.

    Google Scholar 

  21. Hecht SS. Cigarette smoking: cancer risks, carcinogens, and mechanisms. Langenbecks Arch Surg. 2006;391:603–13.

    Article  PubMed  Google Scholar 

  22. Moir D, Rickert WS, Levasseur G, Larose Y, Maertens R, White P, et al. A comparison of mainstream and sidestream marijuana and tobacco cigarette smoke produced under two machine smoking conditions. Chem Res Toxicol. 2008;2:494–502.

    Article  CAS  Google Scholar 

  23. Borgerding M, Klus H. Analysis of complex mixtures—cigarette smoke. Exp Toxicol Pathol. 2005;57(Suppl 1):43–73.

    Article  PubMed  CAS  Google Scholar 

  24. Morton MJ, Laffoon SW. Cigarette smoke chemistry market maps under Massachusetts Department of Public Health smoking conditions. Regul Toxicol Pharmacol. 2008;51:1–30.

    Article  PubMed  CAS  Google Scholar 

  25. Barsanti KC, Luo W, Isabelle LM, Pankow JF, Peyton DH. Tobacco smoke particulate matter chemistry by NMR. Magn Reson Chem. 2007;45:167–70.

    Article  PubMed  CAS  Google Scholar 

  26. Doz E, Noulin N, Boichot E, Guénon I, Fick L, Le Bert M, et al. Cigarette smoke-induced pulmonary inflammation is TLR4/MyD88 and IL-1R1/MyD88 signaling dependent. J Immunol. 2008;180:1169–78.

    PubMed  CAS  Google Scholar 

  27. Chen H, Cowan MJ, Hasday JD, Vogel SN, Medvedev AE. Tobacco smoking inhibits expression of proinflammatory cytokines and activation of IL-1R-associated kinase, p38, and NFκB in alveolar macrophages stimulated with TLR2 and TLR4 agonists. J Immunol. 2007;179:6097–106.

    PubMed  CAS  Google Scholar 

  28. Pauly JL, Waight JD, Paszkiewicz GM. Tobacco flakes on cigarette filters grow bacteria: a potential health risk to the smoker? Tob Control. 2008;17:i49–52.

    Article  PubMed  Google Scholar 

  29. Leulier F, Lemaitre B. Toll-like receptors—taking an evolutionary approach. Nat Rev Genet. 2008;9:165–78.

    Article  PubMed  CAS  Google Scholar 

  30. Gay NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem. 2007;76:141–65.

    Article  PubMed  CAS  Google Scholar 

  31. Takeuchi O, Akira S. Review: signaling pathways activated by microorganisms. Curr Opin Cell Biol. 2007;19:185–91.

    Article  PubMed  CAS  Google Scholar 

  32. Jerala R. Structural biology of the LPS recognition. Int J Med Microbiol. 2007;297:353–63.

    Article  PubMed  CAS  Google Scholar 

  33. Hempling WP, Bokelman GH, Shulleeta M. US Patent 6,755,200. Method for reduction of tobacco specific nitrosamines. June 29 2004.

  34. Rooney AP, Swezey JL, Wicklow DT, McAtee MJ. Bacterial species diversity in cigarettes linked to an investigation of severe pneumonitis in US Military personnel deployed in operation Iraqi freedom. Curr Microbiol. 2005;51:46–52.

    Article  PubMed  CAS  Google Scholar 

  35. Wiernik A, Christakopoulos A, Johansson L, Wahlberg I. Effect of air-curing on the chemical composition of tobacco. Rec Adv Tobacco Sci. 1995;21:39–80.

    Google Scholar 

  36. Larsson L, Szponar B, Ridha B, Pehrson P, Dutkiewicz J, Krysińska-Traczyk E, et al. Identification of bacterial and fungal components in tobacco and tobacco smoke. Tob Induc Dis. 2008;4:4. doi:10.1186/1617-9625-4-4.

    Article  PubMed  CAS  Google Scholar 

  37. Hasday JD, Bascom R, Costa JJ, Fitzgerald T, Dubin W. Bacterial endotoxin is an active component of cigarette smoke. Chest. 1999;115:829–35.

    Article  PubMed  CAS  Google Scholar 

  38. Larsson L, Szponar B, Pehrson C. Tobacco smoking increases dramatically air concentrations of endotoxin. Indoor Air. 2004;14:421–4.

    Article  PubMed  CAS  Google Scholar 

  39. Sebastian A, Pehrson C, Larsson L. Elevated concentrations of endotoxin in indoor air due to cigarette smoking. J Environ Monit. 2006;8:519–22.

    Article  PubMed  CAS  Google Scholar 

  40. Lane KS. US patent 6,786,221. Method and system for assay and removal of harmful toxins during processing of tobacco products. September 7 2004.

  41. Subbiah V. Method of inhibiting mycotoxin production. US Patent 5,698,599. Dec 16 1997.

  42. Cui M, Nielsen MT, Hart III RF, Overbey ML, Watson DJ, Chipley JR. Use of chlorate, sulfur or ozone to reduce tobacco specific nitrosamine. US Patent 2006/019516 A1. Sept 7 2006.

  43. Warke RG, Kamat AS, Kamat MY. Irradiation of chewable tobacco mixes for improvement in microbiological quality. J Food Prot. 1999;62:678–81.

    PubMed  CAS  Google Scholar 

  44. Segal BH. Role of macrophages in host defense against aspergillosis and strategies for immune augmentation. Oncologist. 2007;12:7–13.

    PubMed  CAS  Google Scholar 

  45. Walsh TJ, Roilides E, Cortez K, Kottilil S, Bailey J, Lyman CA. Control, immunoregulation, and expression of innate pulmonary host defenses against Aspergillus fumigatus. Med Mycol. 2005;43:S165–72.

    Article  PubMed  CAS  Google Scholar 

  46. Verweij PE, Kerremans JJ, Voss A, Meis JF. Fungal contamination of tobacco and marijuana. JAMA. 2000;284:2875.

    Article  PubMed  CAS  Google Scholar 

  47. Philip Morris: Project clover Marlboro—roll your own report on the microbial analysis. Jan 26 1984. http://legacy.library.ucsf.edu/tid/dda29e00. Retrieved on 3 Sept 2009. 38 pp.

  48. Peele DM. US Patent 6,895,974. RJ Reynolds, Tobacco processing. May 24 2005.

  49. Peedin GF. Production and practices—flue-cured tobacco. In: Layten Davis D, Mark Nielsen T, editors. Tobacco: production, chemistry and technology. London: Blackwell; 1999. p. 104–228.

    Google Scholar 

  50. Squires WC, Hayes LE, Reynolds RJ. Tobacco flora: quantitative studies. http://tobaccodocuments.org/rjr/500937365-7489.html. Accessed 9 Nov 1961. 125 pp.

  51. Williams JR. Tobacco products having reduced nitrosamine content. US Patent RE38123. May 27 2003.

  52. British American Tobacco Company (BAT). Discussion group on ends quality. http://tobaccodocuments.org/batco/109979765-9924.html. Accessed 2nd-4th July Aug 1 1985. 161 pp.

  53. Rainer NB. Cigarettes having minimized loose ends and process for preparing same. US Patent #4,715,388, Dec 29 1987.

  54. Farr WK. Revere A: examination of whole cigarette smoke by light and electron microscopy. New York: Life Extension Foundation; 1958.

    Google Scholar 

  55. Martonen TB, Musante CJ. Importance of cloud motion on cigarette smoke deposition in lung airways. Inhal Toxicol. 2000;12:261–80.

    Article  PubMed  CAS  Google Scholar 

  56. Marriott HM, Dockrell DH. The role of the macrophage in lung disease mediated by bacteria. Exp Lung Res. 2007;33:493–505.

    Article  PubMed  CAS  Google Scholar 

  57. Zhang Y, Chen J, Chen Y, Dong J, Wei Q, Lou J. Environmental mycological study and allergic respiratory disease among tobacco processing workers. J Occup Health. 2005;47:181–7.

    Article  PubMed  Google Scholar 

  58. Work-Related Lung Disease (WoRLD) Surveillance report. NIOSH—National Institute for Occupational Safety and Health. Hypersensitivity Pneumonitis. Extrinsic allergic alveolitice, Code 495. http://www2.cdc.gov/drds/WorldReportData/.

  59. Singh N, Davis GS. Review: occupational and environmental lung diseases. Curr Opin Pulm Med. 2002;8:117–25.

    Article  PubMed  Google Scholar 

  60. Woda BA. Hypersensitivity pneumonitis: an immunopathology review. Arch Pathol Lab Med. 2008;132:204–5.

    PubMed  Google Scholar 

  61. Wanner A, Salathé M, O’Riordan TG. Review: mucociliary clearance in the airways. Am J Respir Crit Care Med. 1996;154:1868–902.

    PubMed  CAS  Google Scholar 

  62. Birrell MA, Wong S, Catley MC, Belvisi MG. Impact of tobacco-smoke on key signaling pathways in the innate immune response in lung macrophages. J Cell Physiol. 2008;214:27–37.

    Article  PubMed  CAS  Google Scholar 

  63. Arcavi L, Benowitz NL. Cigarette smoking and infection. Arch Intern Med. 2004;164:2206–16.

    Article  PubMed  Google Scholar 

  64. Mannino DM, Buist AS. Global burden of COPD: risk factors, prevalence, and future trends. Lancet. 2007;370:765–73.

    Article  PubMed  Google Scholar 

  65. Kharitonov SA, Sjöbring U. Lipopolysaccharide challenge of humans as a model for chronic obstructive lung disease exacerbations. Contrib Microbiol. 2007;14:83–100.

    Article  PubMed  Google Scholar 

  66. Choi S, Myers JN. Molecular pathogenesis of oral squamous cell carcinoma: implications for therapy. J Dent Res. 2008;87:14–32.

    Article  PubMed  CAS  Google Scholar 

  67. Napier SS, Speight PM. Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med. 2008;37:1–10.

    PubMed  Google Scholar 

  68. Tsantoulis PK, Kastrinakis NG, Tourvas AD, Laskaris G, Gorgoulis VG. Advances in the biology of oral cancer. Oral Oncol. 2007;43:523–34.

    Article  PubMed  CAS  Google Scholar 

  69. Rubinstein I, Pederson GW. Bacillus species are present in chewing tobacco sold in the United States and evoke plasma exudation from the oral mucosa. Clin Diagn Lab Immunol. 2002;9:1057–60.

    PubMed  Google Scholar 

  70. Arrendondo J, Chernyavski AI, Marubio LM, Beaudet AL, Jolkovsky DL, Pinkerton KE, et al. Receptor-mediated tobacco toxicity: regulation of gene expression through alpha3beta2 nicotinic receptor in oral epithelial cells. Am J Pathol. 2005;166:597–613.

    Google Scholar 

Download references

Acknowledgments

We wish to express our appreciation for the assistance of Linda Charles-Steele, Laboratory Supervisor, Department of Clinical Microbiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Pauly.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pauly, J.L., Smith, L.A., Rickert, M.H. et al. Review: Is lung inflammation associated with microbes and microbial toxins in cigarette tobacco smoke?. Immunol Res 46, 127–136 (2010). https://doi.org/10.1007/s12026-009-8117-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8117-6

Keywords

Navigation