Skip to main content
Log in

Changes in the mRNA Levels of α2A and α2C Adrenergic Receptors in Rat Models of Parkinson’s Disease and l-DOPA-Induced Dyskinesia

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The changes in the mRNA levels of α2A and α2C adrenoceptors were investigated in unilateral 6-OHDA-lesioned rat model of Parkinson’s disease and l-DOPA-induced dyskinesia using in situ hybridization. In the untreated 6-OHDA-lesioned rats, α2A expression was elevated in the locus coeruleus (160 ± 8% and 142 ± 8% in lesioned and unlesioned sides compared to the comparable side in sham-operated rats). Following long-term (21 days, twice daily) treatment with l-DOPA (25 mg/kg l-DOPA methyl ester plus benserazide 6.25 mg/kg) in 6-OHDA-lesioned rats, levels of α2A adrenoceptor mRNA in the locus coeruleus were decreased, compared to the 6-OHDA-lesioned rats, returning to the levels of α2A mRNA in the sham-operated rats. α2A adrenoceptor expression was not changed in other brain regions in any treatment group. There was no change in α2C expression in the rostral or caudal striatum in which the highest density of α2C mRNA is present. In conclusion, the data presented in this study demonstrate an increase in α2A adrenoceptor mRNA in the locus coeruleus in the 6-OHDA-lesioned rat model of Parkinson’s disease. In addition, the data show that repeated treatment with l-DOPA in 6-OHDA-lesioned rats, which induces dyskinesia, restores α2A mRNA levels. These changes of α2A mRNA expression, observed in the locus coeruleus, might be of importance to basal ganglia transmission and motor function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alachkar A, Brotchie JM, Jones OT (2010) Binding of dopamine and 3-methoxytyramine as l-DOPA metabolites to human alpha(2)-adrenergic and dopaminergic receptors. Neurosci Res 67(3):245–249

    Article  PubMed  CAS  Google Scholar 

  • Alachkar A, Brotchie J, Jones OT (2006) alpha2-Adrenoceptor-mediated modulation of the release of GABA and noradrenaline in the rat substantia nigra pars reticulata. Neurosci Lett 395(2):138–142

    Article  PubMed  CAS  Google Scholar 

  • Alam M, Danysz W, Schmidt WJ, Dekundy A (2009) Effects of glutamate and alpha2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats. Toxicol Appl Pharmacol 240(2):198–207

    Article  PubMed  CAS  Google Scholar 

  • Aoki C, Go CG, Venkatesan C, Kurose H (1994) Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 650(2):181–204

    Article  PubMed  CAS  Google Scholar 

  • Bertrand E, Lechowicz W, Szpak GM, Dymecki J (1997) Qualitative and quantitative analysis of locus coeruleus neurons in Parkinson’s disease. Folia Neuropathol 35(2):80–86

    PubMed  CAS  Google Scholar 

  • Bosboom JL, Wolters E (2004) Psychotic symptoms in Parkinson’s disease: pathophysiology and management. Expert Opin Drug Saf 3(3):209–220

    Article  PubMed  CAS  Google Scholar 

  • Boyajian CL, Loughlin SE, Leslie FM (1987) Anatomical evidence for alpha-2 adrenoceptor heterogeneity: differential autoradiographic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241(3):1079–1091

    PubMed  CAS  Google Scholar 

  • Brotchie JM (2005) Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 20(8):919–931

    Article  PubMed  Google Scholar 

  • Buck K, Ferger B (2009) Comparison of intrastriatal administration of noradrenaline and l-DOPA on dyskinetic movements: a bilateral reverse in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. Neuroscience 159(1):16–20

    Article  PubMed  CAS  Google Scholar 

  • Colosimo C, Craus A (2003) Noradrenergic drugs for levodopa-induced dyskinesia. Clin Neuropharmacol 26(6):299–305

    Article  PubMed  CAS  Google Scholar 

  • Crossman AR (1990) A hypothesis on the pathophysiological mechanisms that underlie levodopa- or dopamine agonist-induced dyskinesia in Parkinson’s disease: implications for future strategies in treatment. Mov Disord 5(2):100–108

    Article  PubMed  CAS  Google Scholar 

  • Dekundy A, Lundblad M, Danysz W, Cenci MA (2007) Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 179(1):76–89

    Article  PubMed  CAS  Google Scholar 

  • Devoto P, Flore G, Vacca G, Pira L, Arca A, Casu MA, Pani L, Gessa GL (2003) Co-release of noradrenaline and dopamine from noradrenergic neurons in the cerebral cortex induced by clozapine, the prototype atypical antipsychotic. Psychopharmacol Berl 167(1):79–84

    CAS  Google Scholar 

  • Devoto P, Flore G, Saba P, Fa M, Gessa GL (2005) Co-release of noradrenaline and dopamine in the cerebral cortex elicited by single train and repeated train stimulation of the locus coeruleus. BMC Neurosci 6:31

    Article  PubMed  Google Scholar 

  • Devoto P, Flore G, Saba P, Castelli MP, Piras AP, Luesu W, Viaggi MC, Ennas MG, Gessa GL (2008) 6-Hydroxydopamine lesion in the ventral tegmental area fails to reduce extracellular dopamine in the cerebral cortex. J Neurosci Res 86(7):1647–1658

    Article  PubMed  CAS  Google Scholar 

  • Dolphin A, Jenner P, Marsden CD (1976) Noradrenaline synthesis from l-DOPA in rodents and its relationship to motor activity. Pharmacol Biochem Behav 5(4):431–439

    Article  PubMed  CAS  Google Scholar 

  • Filion M, Tremblay L (1991) Abnormal spontaneous activity of globus pallidus neurons in monkeys with MPTP-induced parkinsonism. Brain Res 547(1):142–151

    PubMed  CAS  Google Scholar 

  • Flordellis CS, Castellano M, Franco R, Zannis VI, Gavras H (1990) Expression of multiple alpha 2-adrenergic receptor messenger RNA species in rat tissues. Hypertension 15(6 Pt 2):881–887

    Google Scholar 

  • Fornai F, di Poggio AB, Pellegrini A, Ruggieri S, Paparelli A (2007) Noradrenaline in Parkinson’s disease: from disease progression to current therapeutics. Curr Med Chem 14(22):2330–2334

    Article  PubMed  CAS  Google Scholar 

  • Fox SH, Henry B, Hill MP, Peggs D, Crossman AR, Brotchie JM (2001) Neural mechanisms underlying peak-dose dyskinesia induced by levodopa and apomorphine are distinct: evidence from the effects of the alpha(2) adrenoceptor antagonist idazoxan. Mov Disord 16(4):642–650

    Article  PubMed  CAS  Google Scholar 

  • Galvan A, Wichmann T (2008) Pathophysiology of parkinsonism. Clin Neurophysiol 119(7):1459–1474

    Article  PubMed  CAS  Google Scholar 

  • Gesi M, Soldani P, Giorgi FS, Santinami A, Bonaccorsi I, Fornai F (2000) The role of the locus coeruleus in the development of Parkinson’s disease. Neurosci Biobehav Rev 24(6):655–668

    Article  PubMed  CAS  Google Scholar 

  • Grimbergen YA, Langston JW, Roos RA, Bloem BR (2009) Postural instability in Parkinson’s disease: the adrenergic hypothesis and the locus coeruleus. Expert Rev Neurother 9(2):279–290

    Article  PubMed  CAS  Google Scholar 

  • Grondin R, Hadj TA, Doan VD, Ladure P, Bedard PJ (2000) Noradrenoceptor antagonism with idazoxan improves L-dopa-induced dyskinesias in MPTP monkeys. Naunyn Schmiedebergs Arch Pharmacol 361(2):181–186

    Google Scholar 

  • Guiard BP, El Mansari M, Blier P (2008a) Cross-talk between dopaminergic and noradrenergic systems in the rat ventral tegmental area, locus ceruleus, and dorsal hippocampus. Mol Pharmacol 74(5):1463–1475

    Article  PubMed  CAS  Google Scholar 

  • Guiard BP, El Mansari M, Merali Z, Blier P (2008b) Functional interactions between dopamine, serotonin and norepinephrine neurons: an in-vivo electrophysiological study in rats with monoaminergic lesions. Int J Neuropsychopharmacol 11(5):625–639

    Article  PubMed  CAS  Google Scholar 

  • Haapalinna A, Leino T, Heinonen E (2003) The alpha 2-adrenoceptor antagonist atipamezole potentiates anti-Parkinsonian effects and can reduce the adverse cardiovascular effects of dopaminergic drugs in rats. Naunyn Schmiedebergs Arch Pharmacol 368(5):342–351

    Article  PubMed  CAS  Google Scholar 

  • Henry B, Crossman AR, Brotchie JM (1998) Characterization of a rodent model in which to investigate the molecular and cellular mechanisms underlying the pathophysiology of l-dopa-induced dyskinesia. Adv Neurol 78:53–61

    PubMed  CAS  Google Scholar 

  • Henry B, Fox SH, Peggs D, Crossman AR, Brotchie JM (1999) The alpha2-adrenergic receptor antagonist idazoxan reduces dyskinesia and enhances anti-parkinsonian actions of L-dopa in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 14(5):744–753

    Article  PubMed  CAS  Google Scholar 

  • Hill MP, Brotchie JM (1999) The adrenergic receptor agonist, clonidine, potentiates the anti-parkinsonian action of the selective kappa-opioid receptor agonist, enadoline, in the monoamine-depleted rat. Br J Pharmacol 128(7):1577–1585

    Article  PubMed  CAS  Google Scholar 

  • Holmberg M, Scheinin M, Kurose H, Miettinen R (1999) Adrenergic alpha2C-receptors reside in rat striatal GABAergic projection neurons: comparison of radioligand binding and immunohistochemistry. Neuroscience 93(4):1323–1333

    Article  PubMed  CAS  Google Scholar 

  • Hornykiewicz O, Kish SJ (1987) Biochemical pathophysiology of Parkinson’s disease. Adv Neurol 45:19–34

    PubMed  CAS  Google Scholar 

  • Hudson JL, van Horne CG, Stromberg I, Brock S, Clayton J, Masserano J, Hoffer BJ, Gerhardt GA (1993) Correlation of apomorphine- and amphetamine-induced turning with nigrostriatal dopamine content in unilateral 6-hydroxydopamine lesioned rats. Brain Res 626(1–2):167–174

    Article  PubMed  CAS  Google Scholar 

  • Jones BE, Halaris AE, McIlhany M, Moore RY (1977) Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons. Brain Res 127(1):1–21

    Article  PubMed  CAS  Google Scholar 

  • Lanier SM, Downing S, Duzic E, Homcy CJ (1991) Isolation of rat genomic clones encoding subtypes of the alpha 2-adrenergic receptor. Identification of a unique receptor subtype. J Biol Chem 266(16):10470–10478

    Google Scholar 

  • Lee A, Rosin DL, Van Bockstaele EJ (1998) alpha2A-adrenergic receptors in the rat nucleus locus coeruleus: subcellular localization in catecholaminergic dendrites, astrocytes, and presynaptic axon terminals. Brain Res 795(1–2):157–169

    Article  PubMed  CAS  Google Scholar 

  • Mitchell IJ, Boyce S, Sambrook MA, Crossman AR (1992) A 2-deoxyglucose study of the effects of dopamine agonists on the parkinsonian primate brain. Implications for the neural mechanisms that mediate dopamine agonist-induced dyskinesia. Brain 115(Pt 3):809–824

    Article  PubMed  Google Scholar 

  • Nagatsu T, Sawada M (2007) Biochemistry of postmortem brains in Parkinson’s disease: historical overview and future prospects. J Neural Transm Suppl (72): 113–20

  • Nicholas AP, Pieribone V, Hokfelt T (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328(4):575–594

    Article  PubMed  CAS  Google Scholar 

  • Nishi K, Kondo T, Narabayashi H (1991) Destruction of norepinephrine terminals in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice reduces locomotor activity induced by l-dopa. Neurosci Lett 123(2):244–247

    Article  PubMed  CAS  Google Scholar 

  • Norenberg W, Schoffel E, Szabo B, Starke K (1997) Subtype determination of soma-dendritic alpha2-autoreceptors in slices of rat locus coeruleus. Naunyn Schmiedebergs Arch Pharmacol 356(2):159–165

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates, 2nd edn. Academic, Sydney

    Google Scholar 

  • Persson T, Waldeck B (1970) Further studies on the possible interaction between dopamine and noradrenaline containing neurons in the brain. Eur J Pharmacol 11(3):315–320

    Article  PubMed  CAS  Google Scholar 

  • Remy P, Doder M, Lees A, Turjanski N, Brooks D (2005) Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 128(Pt 6):1314–1322

    Article  PubMed  Google Scholar 

  • Ribas C, Miralles A, Busquets X, Garcia-Sevilla JA (2001) Brain alpha(2)-adrenoceptors in monoamine-depleted rats: increased receptor density, G coupling proteins, receptor turnover and receptor mRNA. Br J Pharmacol 132(7):1467–1476

    Article  PubMed  CAS  Google Scholar 

  • Rommelfanger KS, Weinshenker D (2007) Norepinephrine: the redheaded stepchild of Parkinson’s disease. Biochem Pharmacol 74(2):177–190

    Article  PubMed  CAS  Google Scholar 

  • Rommelfanger KS, Edwards GL, Freeman KG, Liles LC, Miller GW, Weinshenker D (2007) Norepinephrine loss produces more profound motor deficits than MPTP treatment in mice. Proc Natl Acad Sci USA 104(34):13804–13809

    Article  PubMed  CAS  Google Scholar 

  • Savola JM, Hill M, Engstrom M, Merivuori H, Wurster S, McGuire SG, Fox SH, Crossman AR, Brotchie JM (2003) Fipamezole (JP-1730) is a potent alpha2 adrenergic receptor antagonist that reduces levodopa-induced dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Mov Disord 18(8):872–883

    Article  PubMed  Google Scholar 

  • Scheinin M, Lomasney JW, Hayden-Hixson DM, Schambra UB, Caron MG, Lefkowitz RJ, Fremeau RT Jr (1994) Distribution of alpha 2-adrenergic receptor subtype gene expression in rat brain. Brain Res Mol Brain Res 21(1–2):133–149

    Article  PubMed  CAS  Google Scholar 

  • Silverdale MA, McGuire S, McInnes A, Crossman AR, Brotchie JM (2001) Striatal cannabinoid CB1 receptor mRNA expression is decreased in the reserpine-treated rat model of Parkinson’s disease. Exp Neurol 169(2):400–406

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan J, Schmidt WJ (2004a) The effect of the alpha2-adrenoreceptor antagonist idazoxan against 6-hydroxydopamine-induced Parkinsonism in rats: multiple facets of action? Naunyn Schmiedebergs Arch Pharmacol 369(6):629–638

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan J, Schmidt WJ (2004b) Behavioral and neurochemical effects of noradrenergic depletions with N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine in 6-hydroxydopamine-induced rat model of Parkinson’s disease. Behav Brain Res 151(1–2):191–199

    Article  PubMed  CAS  Google Scholar 

  • Unnerstall JR, Kopajtic TA, Kuhar MJ (1984) Distribution of alpha 2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents. Brain Res 319(1):69–101

    PubMed  CAS  Google Scholar 

  • Uhlen S, Lindblom J, Johnson A, Wikberg JE (1997) Autoradiographic studies of central alpha 2A- and alpha 2C-adrenoceptors in the rat using [3H]MK912 and subtype-selective drugs. Brain Res 770(1–2):261–266

    Article  PubMed  CAS  Google Scholar 

  • Wang T, Zhang QJ, Liu J, Wu ZH, Wang S (2009) Firing activity of locus coeruleus noradrenergic neurons increases in a rodent model of Parkinsonism. Neurosci Bull 25(1):15–20

    Article  PubMed  Google Scholar 

  • Yavich L, Sirvio J, Haapalinna A, Ylinen A, Mannisto PT (2003) Atipamezole, an alpha2-adrenoceptor antagonist, augments the effects of L-DOPA on evoked dopamine release in rat striatum. Eur J Pharmacol 462(1–3):83–89

    Article  PubMed  CAS  Google Scholar 

  • Zeng DW, Lynch KR (1991) Distribution of alpha 2-adrenergic receptor mRNAs in the rat CNS. Brain Res Mol Brain Res 10(3):219–225

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Ordway GA (2003) The alpha (2C)-adrenoceptor modulates GABA release in mouse striatum. Brain Res Mol Brain Res 112(1–2):24–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amal Alachkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alachkar, A., Brotchie, J.M. & Jones, O.T. Changes in the mRNA Levels of α2A and α2C Adrenergic Receptors in Rat Models of Parkinson’s Disease and l-DOPA-Induced Dyskinesia. J Mol Neurosci 46, 145–152 (2012). https://doi.org/10.1007/s12031-011-9539-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9539-x

Keywords

Navigation