Skip to main content

Advertisement

Log in

Distinct Expression of Mas1-Related G-Protein-Coupled Receptor B4 in Dorsal Root and Trigeminal Ganglia—Implications for Altered Behaviors in Acid-Sensing Ion Channel 3-Deficient Mice

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Mas1-related G-protein-coupled receptors (Mrgprs), comprising more than 50 distinct members, are specifically expressed in primary sensory neurons. Reflecting the diversity and specificity of stimuli they detect, Mrgprs are involved in pain, touch, and itch-related behaviors. Sensory–neuron-specific acid-sensing ion channel 3 (ASIC3) is essential for touch and inflammatory pain, but mice lacking ASIC3 have complex behavioral alterations in various modalities of pain and touch. To understand whether Mrgprs are involved in complex behavioral alterations found in ASIC3-deficient mice, we examined Mrgpr gene expression in ASIC3−/− mice. Only MrgprB4 expression has shown significant change. MrgprB4 expression was increased in ASIC3−/− dorsal root ganglia (DRG) but decreased in ASIC3−/− trigeminal ganglia. The distinct alterations in DRG and trigeminal ganglia imply that MrgprB4 could have multiple functions. Given that MrgprB4 is expressed in neurons that may detect gentle touch and that ASIC3−/− mice have altered sensitivity of mechanoreceptors for light touch, the expression change of MrgprB4 is more likely related to the altered touch behaviors of ASIC3−/− mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alvarez de la Rosa D, Zhang P, Shao D, White F, Canessa CM (2002) Functional implications of the localization and activity of acid-sensitive channels in rat peripheral nervous system. PNAS 99:2326–2331

    Article  CAS  PubMed  Google Scholar 

  • Bereiter DA, Hargreaves KM, Hu JW (2009) Tirgeminal mechanisms of nociception: peripheral and brainstem organization. In: Basbaum AI, Bushnell MC (eds) Science of pain. Elsevier, San Diego, CA, pp 435–460

    Google Scholar 

  • Bender E, Buist A, Jurzak M, Langlois X, Baggerman G, Verhasselt P, Ercken M, Guo HQ, Wintmolders C, Van den Wyngaert I, Van Oers I, Schoofs L, Luyten W (2002) Characterization of an orphan G protein-coupled receptor localized in the dorsal root ganglia reveals adenine as a signaling molecule. Proc Natl Acad Sci U S A 99:8573–8578

    Article  CAS  PubMed  Google Scholar 

  • Breese NM, George AC, Pauers LE, Stucky CL (2005) Peripheral inflammation selectively increases TRPV1 function in IB4-positive sensory neurons from adult mouse. Pain 115:37–49

    Article  CAS  PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsacicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, England S, Akopian AN, Wood JN (1998) A sensory neuron-specific, proton-gated ion channel. PNAS 95:10240–10245

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Wong CW (2013) Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med 17:337–349

    Article  CAS  PubMed  Google Scholar 

  • Chen CC, Zimmer A, Sun WH, Hall J, Browstein MJ, Zimmer A (2002) A role for ASIC3 in the modulation of high-intensity pain stimuli. PNAS 99:8992–8997

    CAS  PubMed  Google Scholar 

  • Cai Q, Jiang J, Chen T, Hong Y (2007) Sensory neuron-specific receptor agonist BAM8-22 inhibits the development and expression of tolerance to morphine in rats. Behav Brain Res 178:154–159

    Article  CAS  PubMed  Google Scholar 

  • Cox PJ, Pitcher T, Trim SA, Bell CH, Qin W, Kinloch RA (2008) The effect of deletion of the orphan G-protein coupled receptor (GPCR) gene MrgE on pain-like behaviours in mice. Mol Pain 4:2

    Article  PubMed  Google Scholar 

  • Crozier RA, Ajit SK, Kaftan EJ, Pausch MH (2007) MrgprD activation inhibits KCNQ/M-currents and contributes to enhanced neuronal excitability. J Neurosci 27:4492–4496

    Article  CAS  PubMed  Google Scholar 

  • Davis AM (2000) Neurotrophic factor requirements of developing sensory neurons. In: Wood JN (ed) Molecular basis of pain induction. Wiley-Liss, NY, pp 23–42

    Google Scholar 

  • Deval E, Noel J, Lay N, Alloui A, Diochot S, Friend V, Jodar M, Lazdunski M, Lingueglia E (2008) ASIC3, a sensor of acidic and primary inflammatory pain. EMBO J 27:3047–3055

    Article  CAS  PubMed  Google Scholar 

  • Dirajlal S, Pauers LE, Stucky CL (2003) Differential response properties of IB(4)-positive and -negative unmyelinated sensory neurons to protons and capsaicin. J Neurophysiol 89:513–524

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Han S, Zylka MJ, Simon MI, Anderson DJ (2001) A diverse family of GPCRs expressed in specific subsets of nociceptive sensory neurons. Cell 106:619–632

    Article  CAS  PubMed  Google Scholar 

  • Ferri GL, Sabani A, Abelli L, Polak JM, Dahl D, Portier MM (1990) Neuronal intermediate filaments in rat dorsal root ganglia: differential distribution of peripherin and neurofilament protein immunoreactivity and effect of capsaicin. Brain Res 515:331–335

    Article  CAS  PubMed  Google Scholar 

  • Grazzini E, Puma C, Roy MO, Yu XH, O’Donnell D, Schmidt R, Dautrey S, Ducharme J, Perkins M, Panetta R, Laird JMA, Ahmad S, Lembo PMC (2004) Sensory neuron-specific receptor activation elicits central and peripheral nociceptive effects in rats. Proc Natl Acad Sci U S A 101:7175–7180

    Article  CAS  PubMed  Google Scholar 

  • Goldstein ME, House SB, Gainer H (1991) NF-L and peripherin immunoreactivities define distinct classes of rat sensory ganglion cells. J Neurosci Res 30:92–104

    Article  CAS  PubMed  Google Scholar 

  • Guo A, Vulchanova L, Wang J, Li X, Elde R (1999) Immunocytochemical localization of the vanilloid receptor 1 (VR1): relationship to neuropeptides, the P2X3 purinoceptorand IB4 binding sites. Eur J Neurosci 11:946–958

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Dong X, Hwang JI, Zylka MJ, Anderson DJ, Simon MI (2002) Orphan G protein- coupled receptors MrgprA1 and C11 are distinctively activated by RF- amide- related peptides through the Gαq/11 pathway. Proc Natl Acad Sci U S A 99:14740–14745

    Article  CAS  PubMed  Google Scholar 

  • Hong Y, Dai P, Jiang J, Zeng X (2004) Dual effects of intrathecal BAM22 on nociceptive responses in acute and persistent pain-potential function of a novel receptor. Br J Pharmacol 141:423–430

    Article  CAS  PubMed  Google Scholar 

  • Huang CW, Tzeng JN, Chen YJ, Tsai WF, Chen CC, Sun WH (2007) Nociceptors of dorsal root ganglion express proton-sensing G-protein-coupled receptors. Mol Cell Neurosci 36:195–210

    Article  CAS  PubMed  Google Scholar 

  • Ichikawa H, Sugimoto T (2002) The co-expression of ASIC3 with calcitonin gene-related peptide and parvalbumin in the rat trigeminal ganglion. Brain Res 943:287–291

    Article  CAS  PubMed  Google Scholar 

  • Krishtal OA (2003) The ASICs: signaling molecules? Modulators? Trend Neurosci 126:477–483

    Article  Google Scholar 

  • Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol (London) 435:41–63

    CAS  Google Scholar 

  • Lazarov NE (2002) Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurol 66:19–59

    Article  CAS  Google Scholar 

  • Lee CJ, Bardoni R, Tong CK, Engelman HS, Joseph DJ, Magherini PC, MacDermott AB (2002) Functional expression of AMPA receptors on central terminals rat dorsal root ganglion neurons and presynaptic inhibition of glutamate release. Neuron 36:135–146

    Article  Google Scholar 

  • Lembo PM, Grazzini E, Groblewski T, O'Donnell D, Roy MO, Zhang J, Hoffert C, Cao J, Schmidt R, Pelletier M, Labarre M, Gosselin M, Fortin Y, Banville D, Shen SH, Strom P, Payza K, Dray A, Walker P, Ahmad S (2002) Proenkephalin A gene products activate a new family of sensory neuron-specific GPCRs. Nat Neurosci 5:201–209

    Article  CAS  PubMed  Google Scholar 

  • Leung CL, Sun D, Liem RKH (1999) The intermediate filament protein peripherin is the specific interaction partner of mouse BPAG1-n (dystonin) in neurons. J Cell Biol 144:435–446

    Article  CAS  PubMed  Google Scholar 

  • Lin SY, Chang WJ, Lin CS, Huang CY, Wang HF, Sun WH (2011) Serotonin receptor 5-HT2B mediates serotonin-induced mechanical hyperalgesia. J Neurosci 31:1410–18

    Google Scholar 

  • Lingueglia E (2007) Acid-sensing ion channels in sensory perception. J Biol Chem 282:17325–17329

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Tang Z, Surdenikova L, Kim S, Patel KN, Kim A, Ru F, Guan Y, Weng HJ, Geng Y, Undem BJ, Kollarik M, Chen ZF, Anderson DJ, Dong X (2009) Sensory neuron-specific GPCR Mrgprs are itch receptors mediating chloroquine-induced pruritus. Cell 139:1353–1365

    Article  PubMed  Google Scholar 

  • Liu Q, Vrontou S, Rice FL, Zylka MJ, Dong X, Anderson DJ (2007) Molecular genetic visualization of a rare subset of unmyelinated sensory neurons that may detect gentle touch. Nat Neurosci 10:946–948

    Article  CAS  PubMed  Google Scholar 

  • Mogil JS, Breese NM, Witty M-F, Ritchie J, Rainville M-L, Ase A, Abbadi N, Stucky CL, Seguela P (2005) Transgenic expression of a dominant-negative ASIC3 subunit leads to increased sensitivity to mechanical and inflammatory stimuli. J Neurosci 25:9893–9901

    Article  CAS  PubMed  Google Scholar 

  • Molliver DC, Wright DE, Leitner ML, Parsadanian AS, Doster K, Wen D, Yan Q, Snider WD (1997) IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19:849–861

    Article  CAS  PubMed  Google Scholar 

  • Molliver DC, Immke DC, Fierro L, Pare M, Rice FL, McCleskey EW (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35–48

    Article  PubMed  Google Scholar 

  • Mosconi T, Snider WD, Jacquin MF (2001) Neurotrophin receptor expression in retrogradely labeled trigeminal nociceptors-comparisons with spinal nociceptors. Somatosens Mot Res 18:312–321

    Article  CAS  PubMed  Google Scholar 

  • Nordin M (1990) Low-threshold mechanoreceptive and nociceptive units with unmyelinated (C) fibres in the human supraorbital nerve. J Physiol (London) 426:229–240

    CAS  Google Scholar 

  • Olausson H, Lamarre Y, Backlund H, Morin C, Wallin BG, Starck G, Ekholm S, Strigo I, Worsley K, Vallbo ÅB, Bushnell MC (2002) Unmyelinated tactile afferents signal touch and project to insular cortex. Nat Neurosci 5:900–904

    Article  CAS  PubMed  Google Scholar 

  • Pearson ES, Hartley HO (1976) Biometrika tables for statisticians. Biometrika Trust University Press. p289

  • Potrebic S, Ahn AH, Skinner K, Fields HL, Basbaum AI (2003) Peptidergic nociceptors of both trigeminal and dorsal root ganglia express serotonin 1D receptors: implications for the selective antimigraine action of triptans. J Neurosci 23:10988–10997

    CAS  PubMed  Google Scholar 

  • Price MP, Mcllwrath SL, Xie J, Cheng C, Qiao J, Tarr DE, Sluka KA, Brennan TJ, Lewin GR, Welsh MJ (2001) The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice. Neuron 32:1071–1083

    Article  CAS  PubMed  Google Scholar 

  • Robas N, Mead E, Fidock M (2003) MrgprX2 is a high potency cortistatin receptor expressed in dorsal root ganglion. J Biol Chem 278:44400–44404

    Article  CAS  PubMed  Google Scholar 

  • Shinohara T, Harada M, Ogi K, Maruyama M, Fujii R, Tanaka H, Fukusumi S, Komatsu H, Hosoya M, Noguchi Y, Watanabe T, Moriya T, Itoh Y, Hinuma S (2004) Identification of a G protein- coupled receptor specifically responsive to β-alanine. J Biol Chem 279:23559–23564

    Article  CAS  PubMed  Google Scholar 

  • Silos-Santiago I (2000) Neurotrophic signaling and sensory neuron survival and function. In: Wood JN (ed) Molecular basis of pain induction. Wiley-Liss, NY, pp 43–64

    Google Scholar 

  • Sluka KA, Price MP, Breese NM, Stucky CL, Wemmie JA, Welsh MJ (2003) Chronic hyperalgesia induced by repeated acid injections in muscle is abolished by the loss of ASIC3, but not ASIC1. Pain 106:229–239

    Article  CAS  PubMed  Google Scholar 

  • Sluka KA, Radhakrishnan R, Benson CJ, Eshcol JO, Price MP, Babinski K, Audette KM, Yeomans DC, Wilson SP (2007) ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation. Pain 129:102–112

    Article  PubMed  Google Scholar 

  • Stucky CL, Lewin GR (1999) Isolectin B(4)-positive and -negative nociceptors are functionally distinct. J Neurosci 19:6497–6505

    CAS  PubMed  Google Scholar 

  • Sutherland SP, Benson CJ, Adelman JP, McCleskey EW (2001) Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons. Proc Natl Acad Sci U S A 98:711–716

    Article  CAS  PubMed  Google Scholar 

  • Snider WD, McMahon SB (1998) Tacking pain at the source: new ideas about nociceptors. Neuron 20:629–632

    Article  CAS  PubMed  Google Scholar 

  • Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H, Skinner K, Raumann BE, Basbaum AI, Julius D (1998) The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–543

    Article  CAS  PubMed  Google Scholar 

  • Ugawa S, Ueda T, Yamamura H, Shimada S (2005) In situ hybridization evidence for the coexistence of ASIC and TRPV1 within rat single sensory neurons. Mol Brain Res 136:125–133

    Article  CAS  PubMed  Google Scholar 

  • Vallbo ÅB, Olausson H, Wessberg J, Norrsell U (1993) A system of unmyelinated afferents for innocuous mechanoreception in the human skin. Brain Res 628:301–304

    Article  CAS  PubMed  Google Scholar 

  • Vallbo ÅB, Olausson H, Wessberg J (1999) Unmyelinated afferents constitute a second system coding tactile stimuli of the human hairy skin. J Neurophysiol 81:2753–2763

    CAS  PubMed  Google Scholar 

  • Vrontou S, Wong AM, Rau KK, Koerber HR, Anderson DJ (2013) Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo. Nature 493:669–673

    Article  CAS  PubMed  Google Scholar 

  • Waldmann R, Bassilana F, de Weille J, Champigny G, Heurteaux C, Lazdunski M (1997a) Molecular cloning of a non-inactivating proton-gated Na + channel specific for sensory neurons. J Biol Chem 272:20975–20978

    Article  CAS  PubMed  Google Scholar 

  • Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M (1997b) A proton-gated cation channel involved in acid-sensing. Nature 386:173–177

    Article  CAS  PubMed  Google Scholar 

  • Wu WL, Wang CH, Huang E, Chen CC (2009) Asic3−/− female mice with hearing deficit affects social development of pups. PLoS One 4:e6508

    Article  PubMed  Google Scholar 

  • Yagi I, Wenk HN, Naves LA, McCleskey EW (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res 99:501–509

    Article  CAS  PubMed  Google Scholar 

  • Yen YT, Tu PH, Chen CJ, Lin YW, Hsieh ST, Chen CC (2009) Role of acid-sensing ion channel 3 in sub-acute-phase inflammation. Mol Pain 5:1

    Article  PubMed  Google Scholar 

  • Zwick M, Davis BM, Woodbury CJ, Burkett JN, Koerber HR, Simpson JF, Alberts KM (2002) Glial cell line-derived neurotrophic factor is a survival factor for isolectin B4-positive, but not vanilloid receptor 1-positive, neurons in the mouse. J Neurosci 22:4057–4065

    CAS  PubMed  Google Scholar 

  • Zylka MJ, Dong X, Southwell AL, Anderson DJ (2003) A typical expansion in mice of the sensory neuron-specific Mrgpr G protein-coupled receptor family. Proc Natl Acad Sci U S A 100:10043–10048

    Article  CAS  PubMed  Google Scholar 

  • Zylka MJ, Rice FL, Anderson DJ (2005) Topographically distinct epidermal nociceptive circuits revealed by axonal tracers targeted to Mrgprd. Neuron 45:17–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the support of the Institute of Neuroscience at National Yang Ming University for the calcium imaging system. This work was supported by funds from National Science Council, Taiwan (grant no. NSC101-2321-B-008-001), and from National Central University and Landseed Hospital, Taiwan (grant no. NCU-LSH-101-A-002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hsin Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, YH., Chang, CY., Chen, CC. et al. Distinct Expression of Mas1-Related G-Protein-Coupled Receptor B4 in Dorsal Root and Trigeminal Ganglia—Implications for Altered Behaviors in Acid-Sensing Ion Channel 3-Deficient Mice. J Mol Neurosci 51, 820–834 (2013). https://doi.org/10.1007/s12031-013-0070-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0070-0

Keywords

Navigation