Skip to main content

Advertisement

Log in

A Closer Look at Amphetamine-Induced Reverse Transport and Trafficking of the Dopamine and Norepinephrine Transporters

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Amphetamine (AMPH) and its derivatives are regularly used in the treatment of a wide array of disorders such as attention-deficit hyperactivity disorder (ADHD), obesity, traumatic brain injury, and narcolepsy (Prog Neurobiol 75:406–433, 2005; J Am Med Assoc 105:2051–2054, 1935; J Am Acad Child Adolesc Psychiatry 41:514–521, 2002; Neuron 43:261–269, 2004; Annu Rev Pharmacol Toxicol 47:681–698, 2007; Drugs Aging 21:67–79, 2004). Despite the important medicinal role for AMPH, it is more widely known for its psychostimulant and addictive properties as a drug of abuse. The primary molecular targets of AMPH are both the vesicular monoamine transporters (VMATs) and plasma membrane monoamine—dopamine (DA), norepinephrine (NE), and serotonin (5-HT)—transporters. The rewarding and addicting properties of AMPH rely on its ability to act as a substrate for these transporters and ultimately increase extracellular levels of monoamines. AMPH achieves this elevation in extracellular levels of neurotransmitter by inducing synaptic vesicle depletion, which increases intracellular monoamine levels, and also by promoting reverse transport (efflux) through plasma membrane monoamine transporters (J Biol Chem 237:2311–2317, 1962; Med Exp Int J Exp Med 6:47–53, 1962; Neuron 19:1271–1283, 1997; J Physiol 144:314–336, 1958; J Neurosci 18:1979–1986, 1998; Science 237:1219–1223, 1987; J Neurosc 15:4102–4108, 1995). This review will focus on two important aspects of AMPH-induced regulation of the plasma membrane monoamine transporters—transporter mediated monoamine efflux and transporter trafficking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sulzer D, Sonders MS, Poulsen NW, Galli A (2005) Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol 75:406–433

    Article  PubMed  CAS  Google Scholar 

  2. Prinzmetal M, Bloomberg W (1935) Use of benzedrine for the treatment of narcolepsy. J Am Med Assoc 105:2051–2054

    CAS  Google Scholar 

  3. Olfson M, Marcus SC, Weissman MM, Jensen PS (2002) National trends in the use of psychotropic medications by children. J Am Acad Child Adolesc Psychiatry 41:514–521

    Article  PubMed  Google Scholar 

  4. Knutson B et al (2004) Amphetamine modulates human incentive processing. Neuron 43:261–269

    Article  PubMed  CAS  Google Scholar 

  5. Fleckenstein AE, Volz TJ, Riddle EL, Gibb JW, Hanson GR (2007) New insights into the mechanism of action of amphetamines. Annu Rev Pharmacol Toxicol 47:681–698

    Article  PubMed  CAS  Google Scholar 

  6. Martinsson L, Eksborg S (2004) Drugs for stroke recovery: the example of amphetamines. Drugs Aging 21:67–79

    Article  PubMed  CAS  Google Scholar 

  7. Kirshner N (1962) Uptake of catecholamines by a particulate fraction of the adrenal medulla. J Biol Chem 237:2311–2317

    PubMed  CAS  Google Scholar 

  8. Carlsson A, Hillarp NA, Waldeck B (1962) A Mg-ATP dependent storage mechanism in the amine granules of the adrenal medulla. Med Exp Int J Exp Med 6:47–53

    PubMed  CAS  Google Scholar 

  9. Fon EA et al (1997) Vesicular transport regulates monoamine storage and release but is not essential for amphetamine action. Neuron 19:1271–1283

    Article  PubMed  CAS  Google Scholar 

  10. Burn JH, Rand MJ (1958) The action of sympathomimetic amines in animals treated with reserpine. J Physiol 144:314–336

    PubMed  CAS  Google Scholar 

  11. Jones SR, Gainetdinov RR, Wightman RM, Caron MG (1998) Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J Neurosci 18:1979–1986

    PubMed  CAS  Google Scholar 

  12. Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–1223

    Article  PubMed  CAS  Google Scholar 

  13. Sulzer D et al (1995) Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J Neurosci 15:4102–4108

    PubMed  CAS  Google Scholar 

  14. Axelrod J (1965) The metabolism, storage, and release of catecholamines. Recent Prog Horm Res 21:597–622

    PubMed  CAS  Google Scholar 

  15. Jardetzky O (1966) Simple allosteric model for membrane pumps. Nature 211:969–970

    Article  PubMed  CAS  Google Scholar 

  16. Forrest L et al (2008) Mechanism for alternating access in neurotransmitter transporters. Proc Natl Acad Sci USA 105:10338–10343

    Article  PubMed  CAS  Google Scholar 

  17. Erreger K, Grewer C, Javitch JA, Galli A (2008) Currents in response to rapid concentration jumps of amphetamine uncover novel aspects of human dopamine transporter function. J Neurosci 28:976–989

    Article  PubMed  CAS  Google Scholar 

  18. Shi L, Quick M, Zhao Y, Weinstein H, Javitch JA (2008) The mechanism of a neurotransmitter:sodium symporter—inward release of Na+ and substrate is triggered by substrate in a second binding site. Mol Cell 30:667–677

    Article  PubMed  CAS  Google Scholar 

  19. Yamashita A, Singh SK, Kawate T, Jin Y, Gouaux E (2005) Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223

    Article  PubMed  CAS  Google Scholar 

  20. Bruss M, Hammermann R, Brimijoin S, Bonisch H (1995) Antipeptide antibodies confirm the topology of the human norepinephrine transporter. J Biol Chem 270:9197–9201

    Article  PubMed  CAS  Google Scholar 

  21. Hersch SM, Yi H, Heilman CJ, Edwards RH, Levey AI (1997) Subcellular localization and molecular topology of the dopamine transporter in the striatum and substantia nigra. J Comp Neurol 388:211–227

    Article  PubMed  CAS  Google Scholar 

  22. Chen JG, Liu-Chen S, Rudnick G (1998) Determination of external loop topology in the serotonin transporter by site-directed chemical labeling. J Biol Chem 273:12675–12681

    Article  PubMed  CAS  Google Scholar 

  23. Androutsellis-Theotokis A, Rudnick G (2002) Accessibility and conformational coupling in serotonin transporter predicted internal domains. J Neurosci 22:8370–8378

    PubMed  CAS  Google Scholar 

  24. Granas C, Ferrer J, Loland CJ, Javitch JA, Gether U (2003) N-terminal truncation of the dopamine transporter abolishes phorbol ester- and substance P receptor-stimulated phosphorylation without impairing transporter internalization. J Biol Chem 278:4990–5000

    Article  PubMed  CAS  Google Scholar 

  25. Khoshbouei H et al (2004) N-terminal phosphorylation of the dopamine transporter is required for amphetamine-induced efflux. PLoS Biol 2:E78

    Article  PubMed  Google Scholar 

  26. Fog JU et al (2006) Calmodulin kinase II interacts with the dopamine transporter C terminus to regulate amphetamine-induced reverse transport. Neuron 51:417–429

    Article  PubMed  CAS  Google Scholar 

  27. Li LB et al (2004) The role of N-glycosylation in function and surface trafficking of the human dopamine transporter. J Biol Chem 279:21012–21020

    Article  PubMed  CAS  Google Scholar 

  28. Schenk JO (2002) The functioning neuronal transporter for dopamine: kinetic mechanisms and effects of amphetamines, cocaine and methylphenidate. Prog Drug Res 59:111–131

    PubMed  CAS  Google Scholar 

  29. Seiden LS, Sabol KE, Ricaurte GA (1993) Amphetamine: effects on catecholamine systems and behavior. Annu Rev Pharmacol Toxicol 33:639–677

    Article  PubMed  CAS  Google Scholar 

  30. Raiteri M, Cerrito F, Cervoni AM, Levi G (1979) Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J Pharmacol Exp Ther 208:195–202

    PubMed  CAS  Google Scholar 

  31. Heikkila RE, Orlansky H, Mytilineou C, Cohen G (1975) Amphetamine: evaluation of d- and l-isomers as releasing agents and uptake inhibitors for 3H-dopamine and 3H-norepinephrine in slices of rat neostriatum and cerebral cortex. J Pharmacol Exp Ther 194:47–56

    PubMed  CAS  Google Scholar 

  32. Parker EM, Cubeddu LX (1988) Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J Pharmacol Exp Ther 245:199–210

    PubMed  CAS  Google Scholar 

  33. Fischer JF, Cho AK (1979) Chemical release of dopamine from striatal homogenates: evidence for an exchange diffusion model. J Pharmacol Exp Ther 208:203–209

    PubMed  CAS  Google Scholar 

  34. Burnette WB et al (1996) Human norepinephrine transporter kinetics using rotating disk electrode voltammetry. Anal Chem 68:2932–2938

    Article  PubMed  CAS  Google Scholar 

  35. Zaczek R, Culp S, De Souza EB (1991) Interactions of [3H]amphetamine with rat brain synaptosomes. II. Active transport. J Pharmacol Exp Ther 257:830–835

    PubMed  CAS  Google Scholar 

  36. Sonders MS, Zhu SJ, Zahniser NR, Kavanaugh MP, Amara SG (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974

    PubMed  CAS  Google Scholar 

  37. Sitte HH et al (1998) Carrier-mediated release, transport rates, and charge transfer induced by amphetamine, tyramine, and dopamine in mammalian cells transfected with the human dopamine transporter. J Neurochem 71:1289–1297

    Article  PubMed  CAS  Google Scholar 

  38. Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A (2003) Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem 278:12070–12077

    Article  PubMed  CAS  Google Scholar 

  39. Pifl C, Singer EA (1999) Ion dependence of carrier-mediated release in dopamine or norepinephrine transporter-transfected cells questions the hypothesis of facilitated exchange diffusion. Mol Pharmacol 56:1047–1054

    PubMed  CAS  Google Scholar 

  40. Pifl C, Rebernik P, Kattinger A, Reither H (2004) Zn(2+) modulates currents generated by the dopamine transporter: parallel effects on amphetamine-induced charge transfer and release. Neuropharmacology 46:223–231

    Article  PubMed  CAS  Google Scholar 

  41. Pifl C, Drobny H, Reither H, Hornykiewicz O, Singer EA (1995) Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol Pharmacol 47:368–373

    PubMed  CAS  Google Scholar 

  42. Pifl C, Agneter E, Drobny H, Reither H, Singer EA (1997) Induction by low Na+ or Cl of cocaine sensitive carrier-mediated efflux of amines from cells transfected with the cloned human catecholamine transporters. Br J Pharmacol 121:205–212

    Article  PubMed  CAS  Google Scholar 

  43. Seidel S et al (2005) Amphetamines take two to tango: an oligomer-based counter-transport model of neurotransmitter transport explores the amphetamine action. Mol Pharmacol 67:140–151

    PubMed  CAS  Google Scholar 

  44. Kahlig KM et al (2005) Amphetamine induces dopamine efflux through a dopamine transporter channel. Proc Natl Acad Sci USA 102:3495–3500

    Article  PubMed  CAS  Google Scholar 

  45. Melikian HE, Buckley KM (1999) Membrane trafficking regulates the activity of the human dopamine transporter. J Neurosci 19:7699–7710

    PubMed  CAS  Google Scholar 

  46. Carvelli L et al (2002) PI 3-kinase regulation of dopamine uptake. J Neurochem 81:859–869

    Article  PubMed  CAS  Google Scholar 

  47. Loder MK, Melikian HE (2003) The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines. J Biol Chem 278:22168–22174

    Article  PubMed  CAS  Google Scholar 

  48. Giambalvo CT (1992) Protein kinase C and dopamine transport-2. Effects of amphetamine in vitro. Neuropharmacology 31:1211–1222

    CAS  Google Scholar 

  49. Kantor L, Gnegy ME (1998) Protein kinase C inhibitors block amphetamine-mediated dopamine release in rat striatal slices. J Pharmacol Exp Ther 284:592–598

    PubMed  CAS  Google Scholar 

  50. Cowell RM, Kantor L, Hewlett GH, Frey KA, Gnegy ME (2000) Dopamine transporter antagonists block phorbol ester-induced dopamine release and dopamine transporter phosphorylation in striatal synaptosomes. Eur J Pharmacol 389:59–65

    Article  PubMed  CAS  Google Scholar 

  51. Kantor L et al (2001) Protein kinase C and intracellular calcium are required for amphetamine-mediated dopamine release via the norepinephrine transporter in undifferentiated PC12 cells. J Pharmacol Exp Ther 297:1016–1024

    PubMed  CAS  Google Scholar 

  52. Kantor L, Zhang M, Guptaroy B, Park YH, Gnegy ME (2004) Repeated amphetamine couples norepinephrine transporter and calcium channel activities in PC12 cells. J Pharmacol Exp Ther 311:1044–1051

    Article  PubMed  CAS  Google Scholar 

  53. Gnegy ME et al (2004) Intracellular Ca2+ regulates amphetamine-induced dopamine efflux and currents mediated by the human dopamine transporter. Mol Pharmacol 66:137–143

    Article  PubMed  CAS  Google Scholar 

  54. Johnson LA, Guptaroy B, Lund D, Shamban S, Gnegy ME (2005) Regulation of amphetamine-stimulated dopamine efflux by protein kinase C beta. J Biol Chem 280:10914–10919

    Article  PubMed  CAS  Google Scholar 

  55. Foster JD, Pananusorn B, Vaughan RA (2002) Dopamine transporters are phosphorylated on N-terminal serines in rat striatum. J Biol Chem 277:25178–25186

    Article  PubMed  CAS  Google Scholar 

  56. Kantor L, Hewlett GH, Gnegy ME (1999) Enhanced amphetamine- and K+-mediated dopamine release in rat striatum after repeated amphetamine: differential requirements for Ca2+- and calmodulin-dependent phosphorylation and synaptic vesicles. J Neurosci 19:3801–3808

    PubMed  CAS  Google Scholar 

  57. Pierce RC, Kalivas PW (1997) Repeated cocaine modifies the mechanism by which amphetamine releases dopamine. J Neurosci 17:3254–3261

    PubMed  CAS  Google Scholar 

  58. Binda F et al (2008) Syntaxin1A interaction with the dopamine transporter promotes amphetamine-induced dopamine efflux. Mol Pharmacol 74:1101–1108

    Article  PubMed  CAS  Google Scholar 

  59. Dipace C, Sung U, Binda F, Blakely RD, Galli A (2007) Amphetamine induces a calcium/calmodulin-dependent protein kinase II-dependent reduction in norepinephrine transporter surface expression linked to changes in syntaxin 1A/transporter complexes. Mol Pharmacol 71:230–239

    Article  PubMed  CAS  Google Scholar 

  60. Sung U et al (2003) A regulated interaction of syntaxin 1A with the antidepressant- sensitive norepinephrine transporter establishes catecholamine clearance capacity. J Neurosci 23:1697–709

    PubMed  CAS  Google Scholar 

  61. Carvelli L, Blakely RD, DeFelice LJ (2008) Dopamine transporter/syntaxin 1A interactions regulate transporter channel activity and dopaminergic synaptic transmission. Proc Natl Acad Sci USA 105:14192–14197

    Article  PubMed  CAS  Google Scholar 

  62. Fleckenstein AE, Metzger RR, Wilkins DG, Gibb JW, Hanson GR (1997) Rapid and reversible effects of methamphetamine on dopamine transporters. J Pharmacol Exp Ther 282:834–838

    PubMed  CAS  Google Scholar 

  63. Saunders C et al (2000) Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA 97:6850–6855

    Article  PubMed  CAS  Google Scholar 

  64. Kahlig KM, Galli A (2003) Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine. Eur J Pharmacol 479:153–158

    Article  PubMed  CAS  Google Scholar 

  65. Kahlig KM, Javitch JA, Galli A (2004) Amphetamine regulation of dopamine transport. Combined measurements of transporter currents and transporter imaging support the endocytosis of an active carrier. J Biol Chem 279:8966–8975

    Article  PubMed  CAS  Google Scholar 

  66. Kahlig KM et al (2006) Regulation of dopamine transporter trafficking by intracellular amphetamine. Mol Pharmacol 70:542–548

    Article  PubMed  CAS  Google Scholar 

  67. Chi L, Reith ME (2003) Substrate-induced trafficking of the dopamine transporter in heterologously expressing cells and in rat striatal synaptosomal preparations. J Pharmacol Exp Ther 307:729–736

    Article  PubMed  CAS  Google Scholar 

  68. Gulley JM, Doolen S, Zahniser NR (2002) Brief, repeated exposure to substrates down-regulates dopamine transporter function in Xenopus oocytes in vitro and rat dorsal striatum in vivo. J Neurochem 83:400–411

    Article  PubMed  CAS  Google Scholar 

  69. Owens WA et al (2005) Deficits in dopamine clearance and locomotion in hypoinsulinemic rats unmask novel modulation of dopamine transporters by amphetamine. J Neurochem 94:1402–1410

    Article  PubMed  CAS  Google Scholar 

  70. Williams JM et al (2007) Hypoinsulinemia regulates amphetamine-induced reverse transport of dopamine. PLoS Biol 5:2369–2378

    Article  CAS  Google Scholar 

  71. Johnson LA, Furman CA, Zhang M, Guptaroy B, Gnegy ME (2005) Rapid delivery of the dopamine transporter to the plasmalemmal membrane upon amphetamine stimulation. Neuropharmacology 49:750–758

    Article  PubMed  CAS  Google Scholar 

  72. Pristupa ZB et al (1998) Protein kinase-mediated bidirectional trafficking and functional regulation of the human dopamine transporter. Synapse 30:79–87

    Article  PubMed  CAS  Google Scholar 

  73. Daniels GM, Amara SG (1999) Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J Biol Chem 274:35794–35801

    Article  PubMed  CAS  Google Scholar 

  74. Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A (2003) Oligomerization of dopamine transporters visualized in living cells by fluorescence resonance energy transfer microscopy. J Biol Chem 278:28274–28283

    Article  PubMed  CAS  Google Scholar 

  75. Cervinski MA, Foster JD, Vaughan RA (2005) Psychoactive substrates stimulate dopamine transporter phosphorylation and down regulation by cocaine sensitive and protein kinase C dependent mechanisms. J Biol Chem 280:40442–40449

    Article  PubMed  CAS  Google Scholar 

  76. Boudanova E, Navaroli DM, Stevens Z, Melikian HE (2008) Dopamine transporter endocytic determinants: carboxy terminal residues critical for basal and PKC-stimulated internalization. Mol Cell Neurosci 39:211–217

    Article  PubMed  CAS  Google Scholar 

  77. Boudanova E, Navaroli DM, Melikian HE (2008) Amphetamine-induced decreases in dopamine transporter surface expression are protein kinase C-independent. Neuropharmacology 54:605–612

    Article  PubMed  CAS  Google Scholar 

  78. Foster JD, Adkins SD, Lever JR, Vaughan RA (2008) Phorbol ester induced trafficking-independent regulation and enhanced phosphorylation of the dopamine transporter associated with membrane rafts and cholesterol. J Neurochem 105:1683–1699

    Article  PubMed  CAS  Google Scholar 

  79. Wei Y et al (2007) Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism. Mol Pharmacol 71:835–842

    Article  PubMed  CAS  Google Scholar 

  80. Chu PC, Lin MT, Shian LR, Leu SY (1986) Alterations in physiologic functions and in brain monoamine content in streptozocin-diabetic rats. Diabetes 35:481–485

    Article  PubMed  CAS  Google Scholar 

  81. Saitoh A, Morita K, Sodeyama M, Kamei J (1998) Effects of the experimental diabetes on dopamine D1 receptor-mediated locomotor-enhancing activity in mice. Pharmacol Biochem Behav 60:161–166

    Article  PubMed  CAS  Google Scholar 

  82. Karkanias GB, Morales JC, Li CS (1997) Deficits in reproductive behavior in diabetic female rats are due to hypoinsulinemia rather than hyperglycemia. Horm Behav 32:19–29

    Article  PubMed  CAS  Google Scholar 

  83. Doolen S, Zahniser NR (2001) Protein tyrosine kinase inhibitors alter human dopamine transporter activity in Xenopus oocytes. J Pharmacol Exp Ther 296:931–938

    PubMed  CAS  Google Scholar 

  84. Garcia BG et al (2005) Akt is essential for insulin modulation of amphetamine-induced human dopamine transporter cell-surface redistribution. Mol Pharmacol 68:102–109

    PubMed  CAS  Google Scholar 

  85. Galici R et al (2003) Selective decreases in amphetamine self-administration and regulation of dopamine transporter function in diabetic rats. Neuroendocrinology 77:132–140

    Article  PubMed  CAS  Google Scholar 

  86. Lute BJ et al (2008) PI3K signaling supports amphetamine-induced dopamine efflux. Biochem Biophys Res Commun 372:656–661

    Article  PubMed  CAS  Google Scholar 

  87. Zhu MY, Shamburger S, Li J, Ordway GA (2000) Regulation of the human norepinephrine transporter by cocaine and amphetamine. J Pharmacol Exp Ther 295:951–959

    PubMed  CAS  Google Scholar 

  88. Jayanthi LD, Annamalai B, Samuvel DJ, Gether U, Ramamoorthy S (2006) Phosphorylation of the norepinephrine transporter at threonine 258 and serine 259 is linked to protein kinase C-mediated transporter internalization. J Biol Chem 281:23326–23340

    Article  PubMed  CAS  Google Scholar 

  89. Jayanthi LD, Samuvel DJ, Ramamoorthy S (2004) Regulated internalization and phosphorylation of the native norepinephrine transporter in response to phorbol esters. evidence for localization in lipid rafts and lipid raft-mediated internalization. J Biol Chem 279:19315–19326

    Article  PubMed  CAS  Google Scholar 

  90. Mazei-Robison MS et al (2008) Anomalous dopamine release associated with a human dopamine transporter coding variant. J Neurosci 28:7040–7046

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr. Kevin Erreger and Jessica Moore for helpful and insightful discussions. This work was supported by NIH grants MH058921 (Galli, A.), DA13975 (Galli, A.), and MH084755 (Robertson, S.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robertson, S.D., Matthies, H.J.G. & Galli, A. A Closer Look at Amphetamine-Induced Reverse Transport and Trafficking of the Dopamine and Norepinephrine Transporters. Mol Neurobiol 39, 73–80 (2009). https://doi.org/10.1007/s12035-009-8053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-009-8053-4

Keywords

Navigation