Skip to main content
Log in

Characterization of functional roles of DRY motif in the 2nd intracellular loop of dopamine D2 and D3 receptors

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Dopamine D2R and D3R (D2R, D3R) show very high sequence homology and employ virtually identical signaling pathways even though D2R is 2 ∼ 5 times more active. Among the structural motifs identified, a triplet sequence, Asp-Arg-Tyr (DRY motif), plays critical roles in the determination of receptor conformations for signaling and intracellular trafficking of G protein-coupled receptors by forming intramolecular interactions. Thus, it is possible that different signaling efficiencies of D2R and D3R might be caused by the receptor activation levels stabilized by their own DRY motifs. In this study, the Arg and Asp residues of D2R and D3R were mutated, and resulting changes in their signaling and intracellular trafficking properties were comparatively studied. Mutation of the Arg residues of D2R and D3R abolished their signaling but differently affected their intracellular localizations. The wildtype and R132H-D2R were expressed mainly on the plasma membrane. On the other hand, compared with the wildtype D3R, a substantial amount of R128H-D3R was localized intracellularly. The expression of receptor proteins on the plasma membrane and their signaling efficiencies were more drastically affected by the mutation of the Asp residue of D3R than D2R. Therefore, it was concluded that the different levels of conformational strain exerted by the DRY motif might partly determine the quantitative differences in the signaling efficiencies between D2R and D3R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya, S. and Karnik, S. S., Modulation of GDP release from transducin by the conserved Glu134-Arg135 sequence in rhodopsin. J. Biol. Chem., 271, 25406–25411 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Alewijnse, A. E., Timmerman, H., Jacobs, E. H., Smit, M. J., Roovers, E., Cotecchia, S., and Leurs, R., The effect of mutations in the DRY motif on the constitutive activity and structural instability of the histamine H(2) receptor. Mol. Pharmacol., 57, 890–898 (2000).

    PubMed  CAS  Google Scholar 

  • Ballesteros, J., Kitanovic, S., Guarnieri, F., Davies, P., Fromme, B.J., Konvicka, K., Chi, L., Millar, R.P., Davidson, J. S., Weinstein, H., and Sealfon, S.C. Functional microdomains in G-protein-coupled receptors. The conserved arginine-cage motif in the gonadotropin-releasing hormone receptor. J. Biol. Chem., 273, 10445–10453 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Barak, L. S., Oakley, R. H., Laporte, S. A., and Caron, M. G. Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus. Proc. Natl. Acad. Sci. U.S.A., 98, 93–98 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Barak, L. S., Gilchrist, J., Becker, J. M., and Kim, K. M., Relationship between the G protein signaling and homologous desensitization of G protein-coupled receptors. Biochem. Biophys. Res. Commun., 339, 695–700 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Beom, S., Cheong, D., Torres, G., Caron, M. G., and Kim, K. M., Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal-regulated kinase. J. Biol. Chem., 279, 28304–28314 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Burstein, E. S., Spalding, T. A., and Brann, M. R., The second intracellular loop of the m5 muscarinic receptor is the switch which enables G-protein coupling. J. Biol. Chem., 273, 24322–24327 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Chio, C. L., Lajiness, M. E., and Huff, R. M., Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol. Pharmacol., 45, 51–60 (1994).

    PubMed  CAS  Google Scholar 

  • Diaz, J., Pilon, C., Le Foll, B., Gros, C., Triller, A., Schwartz, J. C., and Sokoloff, P. Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J. Neurosci., 20, 8677–8684 (2000).

    PubMed  CAS  Google Scholar 

  • Flanagan, C. A., A GPCR that is not “DRY”. Mol. Pharmacol., 68, 1–3 (2005).

    PubMed  CAS  Google Scholar 

  • Freedman, S. B., Patel, S., Marwood, R., Emms, F., Seabrook, G. R., Knowles, M. R., and McAllister, G., Expression and pharmacological characterization of the human D3 dopamine receptor. J. Pharmacol. Exp. Ther., 268, 417–426 (1994).

    PubMed  CAS  Google Scholar 

  • Ganz, M. B., Pachter, J. A., and Barber, D. L. Multiple receptors coupled to adenylate cyclase regulate Na-H exchange independent of cAMP. J. Biol. Chem., 265, 8989–8992 (1990).

    PubMed  CAS  Google Scholar 

  • Gether, U., Ballesteros, J. A., Seifert, R., Sanders-Bush, E., Weinstein, H., and Kobilka, B. K., Structural instability of a constitutively active G protein-coupled receptor. Agonist-independent activation due to conformational flexibility. J. Biol. Chem., 272, 2587–2590 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Giros, B., Martres, M. P., Sokoloff, P., and Schwartz, J. C., Gene cloning of human dopaminergic D3 receptor and identification of its chromosome. C R Acad Sci III, 311, 501–508 (1990).

    PubMed  CAS  Google Scholar 

  • Groblewski, T., Maigret, B., Larguier, R., Lombard, C., Bonnafous, J. C., and Marie, J., Mutation of Asn111 in the third transmembrane domain of the AT1A angiotensin II receptor induces its constitutive activation. J. Biol. Chem., 272, 1822–1826 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Gurevich, E. V. and Joyce, J. N., Distribution of dopamine D3 receptor expressing neurons in the human forebrain: comparison with D2 receptor expressing neurons. Neuropsychopharmacology, 20, 60–80 (1990).

    Article  Google Scholar 

  • Himmler, A., Stratowa, C., and Czernilofsky, A. P., Functional testing of human dopamine D1 and D5 receptors expressed in stable cAMP-responsive luciferase reporter cell lines. J. Recept. Res., 13, 79–94 (1993).

    PubMed  CAS  Google Scholar 

  • Kim, K. M. and Caron, M. G., Complementary roles of the DRY motif and C-terminus tail of GPCRS for G protein coupling and beta-arrestin interaction. Biochem. Biophys. Res. Commun., 366, 42–47 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. M., Gainetdinov, R. R., Laporte, S. A., Caron, M. G., and Barak, L. S., G protein-coupled receptor kinase regulates dopamine D3 receptor signaling by modulating the stability of a receptor-filamin-beta-arrestin complex. A case of autoreceptor regulation. J. Biol. Chem., 280, 12774–12780 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. M., Valenzano, K. J., Robinson, S. R., Yao, W. D., Barak, L. S., and Caron, M. G., Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J. Biol. Chem., 276, 37409–37414 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kuzhikandathil, E. V. and Oxford, G. S., Activation of human D3 dopamine receptor inhibits P/Q-type calcium channels and secretory activity in AtT-20 cells. J. Neurosci., 19, 1698–1707 (1999).

    PubMed  CAS  Google Scholar 

  • Lu, Z. L., Curtis, C. A., Jones, P. G., Pavia, J., and Hulme, E. C., The role of the aspartate-arginine-tyrosine triad in the m1 muscarinic receptor: mutations of aspartate 122 and tyrosine 124 decrease receptor expression but do not abolish signaling. Mol. Pharmacol., 51, 234–241 (1997).

    PubMed  CAS  Google Scholar 

  • Mhaouty-Kodja, S., Barak, L.S., Scheer, A., Abuin, L., Diviani, D., Caron, M. G., and Cotecchia, S., Constitutively active alpha-1β adrenergic receptor mutants display different phosphorylation and internalization features. Mol. Pharmacol., 55:339–347 (1999).

    PubMed  CAS  Google Scholar 

  • Mirzadegan, T., Benko, G., Filipek, S., and Palczewski, K., Sequence analyses of G-protein-coupled receptors: similarities to rhodopsin. Biochemistry, 42, 2759–2767 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Neve, K. A., Kozlowski, M. R., and Rosser, M. P., Dopamine D2 receptor stimulation of Na+/H+ exchange assessed by quantification of extracellular acidification. J. Biol. Chem., 267, 25748–25753 (1992).

    PubMed  CAS  Google Scholar 

  • Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., and Miyano, M., Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289, 739–745 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Pilon, C., Levesque, D., Dimitriadou, V., Griffon, N., Martres, M. P., Schwartz, J. C., and Sokoloff, P., Functional coupling of the human dopamine D3 receptor in a transfected NG 108–15 neuroblastoma-glioma hybrid cell line. Eur. J. Pharmacol., 268, 129–139 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen, S. G., Jensen, A. D., Liapakis, G., Ghanouni, P., Javitch, J. A., and Gether, U., Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. Mol. Pharmacol., 56, 175–184 (1999).

    PubMed  CAS  Google Scholar 

  • Robinson, S. W. and Caron, M. G. Selective inhibition of adenylyl cyclase type V by the dopamine D3 receptor. Mol. Pharmacol., 52, 508–514 (1997).

    PubMed  CAS  Google Scholar 

  • Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G., and Cotecchia, S., Constitutively active mutants of the alpha 1B-adrenergic receptor: role of highly conserved polar amino acids in receptor activation. Embo J., 15, 3566–3578 (1996).

    PubMed  CAS  Google Scholar 

  • Scheer, A., Fanelli, F., Costa, T., De Benedetti, P. G., and Cotecchia, S., The activation process of the alpha1B-adrenergic receptor: potential role of protonation and hydrophobicity of a highly conserved aspartate. Proc. Natl. Acad. Sci. U.S.A., 94, 808–813 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Scheer, A., Costa, T., Fanelli, F., De Benedetti, P. G., Mhaouty-Kodja, S., Abuin, L., Nenniger-Tosato, M., and Cotecchia, S., Mutational analysis of the highly conserved arginine within the Glu/Asp-Arg-Tyr motif of the alpha(1b)-adrenergic receptor: effects on receptor isomerization and activation. Mol. Pharmacol., 57, 219–231 (2000).

    PubMed  CAS  Google Scholar 

  • Seabrook, G. R., Patel, S., Marwood, R., Emms, F., Knowles, M. R., Freedman, S. B., and McAllister, G., Stable expression of human D3 dopamine receptors in GH4C1 pituitary cells. FEBS Lett, 312, 123–126 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Sokoloff, P., Giros, B., Martres, M. P., Bouthenet, M. L., and Schwartz, J. C., Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature, 347, 146–151 (1990).

    Article  PubMed  CAS  Google Scholar 

  • Tang, L., Todd, R. D., and O’Malley, K. L., Dopamine D2 and D3 receptors inhibit dopamine release. J. Pharmacol. Exp. Ther., 270, 475–479 (1994).

    PubMed  CAS  Google Scholar 

  • Teller, D. C., Okada, T., Behnke, C. A., Palczewski, K., and Stenkamp, R. E., Advances in determination of a high-resolution three-dimensional structure of rhodopsin, a model of G-protein-coupled receptors (GPCRs). Biochemistry, 40, 7761–7772 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Welsh, G. I., Hall, D. A., Warnes, A., Strange, P. G., and Proud, C. G., Activation of microtubule-associated protein kinase (Erk) and p70 S6 kinase by D2 dopamine receptors. J. Neurochem., 70, 2139–2146 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wess, J., Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol. Ther., 80, 231–264 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Wilbanks A. M., Laporte, S. A., Bohn, L. M., Barak, L. S., and Caron, M. G., Apparent loss-of-function mutant GPCRs revealed as constitutively desensitized receptors. Biochemistry, 41, 11981–11989 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong-Man Kim.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JH., Cho, EY., Min, C. et al. Characterization of functional roles of DRY motif in the 2nd intracellular loop of dopamine D2 and D3 receptors. Arch. Pharm. Res. 31, 474–481 (2008). https://doi.org/10.1007/s12272-001-1181-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-001-1181-x

Key words

Navigation