Skip to main content
Log in

Chemical biology in stem cell research

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Stem cells are offering a considerable range of prospects to the biomedical research including novel platforms for disease models and drug discovery tools to cell transplantation and regenerative therapies. However, there are several obstacles to overcome to bring these potentials into reality. First, robust methods to maintain stem cells in the pluripotent state should be established and factors that are required to direct stem cell fate into a particular lineage should be elucidated. Second, both allogeneic rejection following transplantation and limited cell availability issues must be circumvented. These challenges are being addressed, at least in part, through the identification of a group of chemicals (small molecules) that possess novel activities on stem cell biology. For example, small molecules can be used both in vitro and/or in vivo as tools to promote proliferation of stem cells (self-renewal), to direct stem cells to a lineage specific patterns (differentiation), or to reprogram somatic cells to a more undifferentiated state (de-differentiation or reprogramming). These molecules, in turn, have provided new insights into the signaling mechanisms that regulate stem cell biology, and may eventually lead to effective therapies in regenerative medicine. In this review, we will introduce recent findings with regards to small molecules and their impact on stem cell self-renewal and differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adhikary, S. and Eilers, M., Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol., 6, 635–645 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ahn, S. and Joyner, A. L., In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature, 437, 894–897 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Amabile, G., D’Alise, A. M., Iovino, M., Jones, P., Santaguida, S., Musacchio, A., Taylor, S., and Cortese, R., The Aurora B kinase activity is required for the maintenance of the differentiated state of murine myoblasts. Cell Death Differ., 16, 321–330 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Amit, M., Shariki, C., Margulets, V., and Itskovitz-Eldor, J., Feeder layer- and serum-free culture of human embryonic stem cells. Biol. Reprod., 70, 837–845 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Anastasia, L., Sampaolesi, M., Papini, N., Oleari, D., Lamorte, G., Tringali, C., Monti, E., Galli, D., Tettamanti, G., Cossu, G., and Venerando, B., Reversine-treated fibroblasts acquire myogenic competence in vitro and in regenerating skeletal muscle. Cell Death Differ., 13, 2042–2051 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis, A., Leker, R. R., Soldner, F., Hoeppner, D. J., Ravin, R., Poser, S. W., Rueger, M. A., Bae, S. K., Kittappa, R., and McKay, R. D., Notch signalling regulates stem cell numbers in vitro and in vivo. Nature, 442, 823–826 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Ao, A., Hao, J., and Hong, C. C., Regenerative chemical biology: current challenges and future potential. Chem. Biol., 18, 413–424 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Araki, H., Mahmud, N., Milhem, M., Nunez, R., Xu, M., Beam, C. A., and Hoffman, R., Expansion of human umbilical cord blood SCID-repopulating cells using chromatinmodifying agents. Exp. Hematol., 34, 140–149 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Arya, P., Joseph, R., and Chou, D. T., Toward high-throughput synthesis of complex natural product-like compounds in the genomics and proteomics age. Chem. Biol., 9, 145–156 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Baer, A. S., Syed, Y. A., Kang, S. U., Mitteregger, D., Vig, R., Ffrench-Constant, C., Franklin, R. J., Altmann, F., Lubec, G., and Kotter, M. R., Myelin-mediated inhibition of oligodendrocyte precursor differentiation can be overcome by pharmacological modulation of Fyn-RhoA and protein kinase C signalling. Brain, 132, 465–481 (2009).

    Article  PubMed  Google Scholar 

  • Bass, A. J., Watanabe, H., Mermel, C. H., Yu, S., Perner, S., Verhaak, R. G., Kim, S. Y., Wardwell, L., Tamayo, P., Gat-Viks, I., Ramos, A. H., Woo, M. S., Weir, B. A., Getz, G., Beroukhim, R., O’Kelly, M., Dutt, A., Rozenblatt-Rosen, O., Dziunycz, P., Komisarof, J., Chirieac, L. R., Lafargue, C. J., Scheble, V., Wilbertz, T., Ma, C., Rao, S., Nakagawa, H., Stairs, D. B., Lin, L., Giordano, T. J., Wagner, P., Minna, J. D., Gazdar, A. F., Zhu, C. Q., Brose, M. S., Cecconello, I., Jr, U. R., Marie, S. K., Dahl, O., Shivdasani, R. A., Tsao, M. S., Rubin, M. A., Wong, K. K., Regev, A., Hahn, W. C., Beer, D. G., Rustgi, A. K., and Meyerson, M., SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat. Genet., 41, 1238–1242 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Beattie, G. M., Lopez, A. D., Bucay, N., Hinton, A., Firpo, M. T., King, C. C., and Hayek, A., Activin A maintains pluripotency of human embryonic stem cells in the absence of feeder layers. Stem Cells, 23, 489–495 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Bendall, S. C., Stewart, M. H., Menendez, P., George, D., Vijayaragavan, K., Werbowetski-Ogilvie, T., Ramos-Mejia, V., Rouleau, A., Yang, J., Bosse, M., Lajoie, G., and Bhatia, M., IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 448, 1015–1021 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Benvenuti, S., Cellai, I., Luciani, P., Deledda, C., Baglioni, S., Giuliani, C., Saccardi, R., Mazzanti, B., Dal Pozzo, S., Mannucci, E., Peri, A., and Serio, M., Rosiglitazone stimulates adipogenesis and decreases osteoblastogenesis in human mesenchymal stem cells. J Endocrinol. Invest., 30, RC26–RC30 (2007).

    PubMed  CAS  Google Scholar 

  • Berman, D. M., Karhadkar, S. S., Hallahan, A. R., Pritchard, J. I., Eberhart, C. G., Watkins, D. N., Chen, J. K., Cooper, M. K., Taipale, J., Olson, J. M., and Beachy, P. A., Medulloblastoma growth inhibition by hedgehog pathway blockade. Science, 297, 1559–1561 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Blackwell, H. E., Perez, L., Stavenger, R. A., Tallarico, J. A., Cope Eatough, E., Foley, M. A., and Schreiber, S. L., A one-bead, one-stock solution approach to chemical genetics: part 1. Chem. Biol., 8, 1167–1182 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Boitano, A. E., Wang, J., Romeo, R., Bouchez, L. C., Parker, A. E., Sutton, S. E., Walker, J. R., Flaveny, C. A., Perdew, G. H., Denison, M. S., Schultz, P. G., and Cooke, M. P., Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science, 329, 1345–1348 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Boland, M. J., Hazen, J. L., Nazor, K. L., Rodriguez, A. R., Gifford, W., Martin, G., Kupriyanov, S., and Baldwin, K. K., Adult mice generated from induced pluripotent stem cells. Nature, 461, 91–94 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Bone, H. K., Damiano, T., Bartlett, S., Perry, A., Letchford, J., Ripoll, Y. S., Nelson, A. S., and Welham, M. J., Involvement of GSK-3 in regulation of murine embryonic stem cell self-renewal revealed by a series of bisindolylmaleimides. Chem. Biol., 16, 15–27 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Bunin, B. A., Plunkett, M. J., and Ellman, J. A., The combinatorial synthesis and chemical and biological evaluation of a 1,4-benzodiazepine library. Proc. Natl. Acad. Sci. U. S. A., 91, 4708–4712 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Burba, I., Colombo, G. I., Staszewsky, L. I., De Simone, M., Devanna, P., Nanni, S., Avitabile, D., Molla, F., Cosentino, S., Russo, I., De Angelis, N., Soldo, A., Biondi, A., Gambini, E., Gaetano, C., Farsetti, A., Pompilio, G., Latini, R., Capogrossi, M. C., and Pesce, M., Histone deacetylase inhibition enhances self renewal and cardioprotection by human cord blood-derived CD34 cells. PLoS ONE, 6, e22158 (2011).

    Google Scholar 

  • Bushway, P. J. and Mercola, M., High-throughput screening for modulators of stem cell differentiation. Methods Enzymol., 414, 300–316 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Canudas, A. M., Di Giorgi-Gerevini, V., Iacovelli, L., Nano, G., D’Onofrio, M., Arcella, A., Giangaspero, F., Busceti, C., Ricci-Vitiani, L., Battaglia, G., Nicoletti, F., and Melchiorri, D., PHCCC, a specific enhancer of type 4 metabotropic glutamate receptors, reduces proliferation and promotes differentiation of cerebellar granule cell neuroprecursors. J. Neurosci., 24, 10343–10352 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., and Dalton, S., LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132, 885–896 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Chambers, I., Colby, D., Robertson, M., Nichols, J., Lee, S., Tweedie, S., and Smith, A., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 113, 643–655 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Zhang, Q., Wu, X., Schultz, P. G., and Ding, S., Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc., 126, 410–411 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Do, J. T., Zhang, Q., Yao, S., Yan, F., Peters, E. C., Scholer, H. R., Schultz, P. G., and Ding, S., Self-renewal of embryonic stem cells by a small molecule. Proc. Natl. Acad. Sci. U. S. A., 103, 17266–17271 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Chen, S., Takanashi, S., Zhang, Q., Xiong, W., Zhu, S., Peters, E. C., Ding, S., and Schultz, P. G., Reversine increases the plasticity of lineage-committed mammalian cells. Proc. Natl. Acad. Sci. U. S. A., 104, 10482–10487 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Clemons, P. A., Koehler, A. N., Wagner, B. K., Sprigings, T. G., Spring, D. R., King, R. W., Schreiber, S. L., and Foley, M. A., A one-bead, one-stock solution approach to chemical genetics: part 2. Chem. Biol., 8, 1183–1195 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Colca, J. R. and Harrigan, G. G., Photo-affinity labeling strategies in identifying the protein ligands of bioactive small molecules: examples of targeted synthesis of drug analog photoprobes. Comb. Chem. High Throughput Screen, 7, 699–704 (2004).

    PubMed  CAS  Google Scholar 

  • Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A. P., Powers, D., and Melton, D. A., Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med., 350, 1353–1356 (2004).

    Article  PubMed  CAS  Google Scholar 

  • D’Alise, A. M., Amabile, G., Iovino, M., Di Giorgio, F. P., Bartiromo, M., Sessa, F., Villa, F., Musacchio, A., and Cortese, R., Reversine, a novel Aurora kinases inhibitor, inhibits colony formation of human acute myeloid leukemia cells. Mol. Cancer Ther., 7, 1140–1149 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Dennis, J. E. and Caplan, A. I., In Stem Cells Handbook., Sell, S. (Ed.). Human Press, Totowa, p. 107, (2004).

    Google Scholar 

  • Diamandis, P., Wildenhain, J., Clarke, I. D., Sacher, A. G., Graham, J., Bellows, D. S., Ling, E. K., Ward, R. J., Jamieson, L. G., Tyers, M., and Dirks, P. B., Chemical genetics reveals a complex functional ground state of neural stem cells. Nat. Chem. Biol., 3, 268–273 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Ding, S., Gray, N. S., Wu, X., Ding, Q., and Schultz, P. G., A combinatorial scaffold approach toward kinase-directed heterocycle libraries. J. Am. Chem. Soc., 124, 1594–1596 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Ding, S., Wu, T. Y., Brinker, A., Peters, E. C., Hur, W., Gray, N. S., and Schultz, P. G., Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. U. S. A., 100, 7632–7637 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ding, S. and Schultz, P. G., A role for chemistry in stem cell biology. Nat. Biotechnol., 22, 833–840 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Doble, B. W. and Woodgett, J. R., GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci., 116, 1175–1186 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Dravid, G., Ye, Z., Hammond, H., Chen, G., Pyle, A., Donovan, P., Yu, X., and Cheng, L., Defining the role of Wnt/betacatenin signaling in the survival, proliferation, and selfrenewal of human embryonic stem cells. Stem Cells, 23, 1489–1501 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ehninger, A. and Trumpp, A., The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J. Exp. Med., 208, 421–428 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Ertl, P., Jelfs, S., Muhlbacher, J., Schuffenhauer, A., and Selzer, P., Quest for the rings. In silico exploration of ring universe to identify novel bioactive heteroaromatic scaffolds. J. Med. Chem., 49, 4568–4573 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Evans, M. J. and Kaufman, M. H., Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156 (1981).

    Article  PubMed  CAS  Google Scholar 

  • Firestone, A. J. and Chen, J. K., Controlling destiny through chemistry: small-molecule regulators of cell fate. ACS Chem. Biol., 5, 15–34 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Fischer, A., Sananbenesi, F., Wang, X., Dobbin, M., and Tsai, L. H., Recovery of learning and memory is associated with chromatin remodelling. Nature, 447, 178–182 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Foster, K. W., Liu, Z., Nail, C. D., Li, X., Fitzgerald, T. J., Bailey, S. K., Frost, A. R., Louro, I. D., Townes, T. M., Paterson, A. J., Kudlow, J. E., Lobo-Ruppert, S. M., and Ruppert, J. M., Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene, 24, 1491–1500 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Frank-Kamenetsky, M., Zhang, X. M., Bottega, S., Guicherit, O., Wichterle, H., Dudek, H., Bumcrot, D., Wang, F. Y., Jones, S., Shulok, J., Rubin, L. L., and Porter, J. A., Smallmolecule modulators of Hedgehog signaling: identification and characterization of Smoothened agonists and antagonists. J. Biol., 1, 10 (2002).

    Article  PubMed  Google Scholar 

  • Franklin, R. J. and Ffrench-Constant, C., Remyelination in the CNS: from biology to therapy. Nat. Rev. Neurosci., 9, 839–855 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Gage, F. H., Mammalian neural stem cells. Science, 287, 1433–1438 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Garriga-Canut, M. and Orkin, S. H., Transforming acidic coiled-coil protein 3 (TACC3) controls friend of GATA-1 (FOG-1) subcellular localization and regulates the association between GATA-1 and FOG-1 during hematopoiesis. J. Biol. Chem., 279, 23597–23605 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Gidekel, S., Pizov, G., Bergman, Y., and Pikarsky, E., Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell, 4, 361–370 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Graf, T. and Enver, T., Forcing cells to change lineages. Nature, 462, 587–594 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Greber, B., Coulon, P., Zhang, M., Moritz, S., Frank, S., Muller-Molina, A. J., Arauzo-Bravo, M. J., Han, D. W., Pape, H. C., and Scholer, H. R., FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J., 30, 4874–4884 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Grinshtein, N., Datti, A., Fujitani, M., Uehling, D., Prakesch, M., Isaac, M., Irwin, M. S., Wrana, J. L., Al-Awar, R., and Kaplan, D. R., Small molecule kinase inhibitor screen identifies polo-like kinase 1 as a target for neuroblastoma tumor-initiating cells. Cancer Res., 71, 1385–1395 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Hao, J., Daleo, M. A., Murphy, C. K., Yu, P. B., Ho, J. N., Hu, J., Peterson, R. T., Hatzopoulos, A. K., and Hong, C. C., Dorsomorphin, a selective small molecule inhibitor of BMP signaling, promotes cardiomyogenesis in embryonic stem cells. PLoS ONE, 3, e2904 (2008).

    Google Scholar 

  • Hao, Y., Creson, T., Zhang, L., Li, P., Du, F., Yuan, P., Gould, T. D., Manji, H. K., and Chen, G., Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis. J. Neurosci., 24, 6590–6599 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hochedlinger, K., Yamada, Y., Beard, C., and Jaenisch, R., Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell, 121, 465–477 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Hong, J., Role of natural product diversity in chemical biology. Curr. Opin. Chem. Biol., 15, 350–354 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Horwitz, E. M., Prockop, D. J., Fitzpatrick, L. A., Koo, W. W., Gordon, P. L., Neel, M., Sussman, M., Orchard, P., Marx, J. C., Pyeritz, R. E., and Brenner, M. K., Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med., 5, 309–313 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, J., Nakashima, K., Kuwabara, T., Mejia, E., and Gage, F. H., Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. U. S. A., 101, 16659–16664 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Hsieh, T. C., Traganos, F., Darzynkiewicz, Z., and Wu, J. M., The 2,6-disubstituted purine reversine induces growth arrest and polyploidy in human cancer cells. Int. J. Oncol., 31, 1293–1300 (2007).

    PubMed  CAS  Google Scholar 

  • Huryn, D. M., Brodsky, J. L., Brummond, K. M., Chambers, P. G., Eyer, B., Ireland, A. W., Kawasumi, M., Laporte, M. G., Lloyd, K., Manteau, B., Nghiem, P., Quade, B., Seguin, S. P., and Wipf, P., Chemical methodology as a source of small-molecule checkpoint inhibitors and heat shock protein 70 (Hsp70) modulators. Proc. Natl. Acad. Sci. U. S. A., 108, 6757–6762 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Ichida, J. K., Blanchard, J., Lam, K., Son, E. Y., Chung, J. E., Egli, D., Loh, K. M., Carter, A. C., Di Giorgio, F. P., Koszka, K., Huangfu, D., Akutsu, H., Liu, D. R., Rubin, L. L., and Eggan, K., A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell, 5, 491–503 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Jaenisch, R. and Young, R., Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell, 132, 567–582 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Jaiswal, N., Haynesworth, S. E., Caplan, A. I., and Bruder, S. P., Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J. Cell Biochem., 64, 295–312 (1997).

    Article  PubMed  CAS  Google Scholar 

  • James, D., Levine, A. J., Besser, D., and Hemmati-Brivanlou, A., TGFbeta/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells. Development, 132, 1273–1282 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Johnson, G. L. and Lapadat, R., Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298, 1911–1912 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Jones, B. J. and McTaggart, S. J., Immunosuppression by mesenchymal stromal cells: from culture to clinic. Exp. Hematol., 36, 733–741 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Joubert, L., Foucault, I., Sagot, Y., Bernasconi, L., Duval, F., Alliod, C., Frossard, M. J., Pescini Gobert, R., Curchod, M. L., Salvat, C., Nichols, A., Pouly, S., Rommel, C., Roach, A., and Hooft van Huijsduijnen, R., Chemical inducers and transcriptional markers of oligodendrocyte differentiation. J. Neurosci. Res., 88, 2546–2557 (2010).

    PubMed  CAS  Google Scholar 

  • Jung, D. W. and Williams, D. R., Novel chemically defined approach to produce multipotent cells from terminally differentiated tissue syncytia. ACS Chem. Biol., 6, 553–562 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Kim, Y. K., Choi, H. Y., Kim, N. H., Lee, W., Seo, D. W., Kang, D. W., Lee, H. Y., Han, J. W., Park, S. W., and Kim, S. N., Reversine stimulates adipocyte differentiation and downregulates Akt and p70(s6k) signaling pathways in 3T3-L1 cells. Biochem. Biophys. Res. Commun, 358, 553–558 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Knockaert, M., Wieking, K., Schmitt, S., Leost, M., Grant, K. M., Mottram, J. C., Kunick, C., and Meijer, L., Intracellular Targets of Paullones. Identification following affinity purification on immobilized inhibitor. J. Biol. Chem., 277, 25493–25501 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Laflamme, M. A. and Murry, C. E., Regenerating the heart. Nat. Biotechnol., 23, 845–856 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Laping, N. J., Grygielko, E., Mathur, A., Butter, S., Bomberger, J., Tweed, C., Martin, W., Fornwald, J., Lehr, R., Harling, J., Gaster, L., Callahan, J. F., and Olson, B. A., Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol. Pharmacol., 62, 58–64 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Lee, K. L., Lim, S. K., Orlov, Y. L., Yit le, Y., Yang, H., Ang, L. T., Poellinger, L., and Lim, B., Graded Nodal/Activin signaling titrates conversion of quantitative phospho-Smad2 levels into qualitative embryonic stem cell fate decisions. PLoS Genet., 7, e1002130 (2011).

    Google Scholar 

  • Li, J., Gao, G. D., and Yuan, T. F., Cell based vaccination using transplantation of iPSC-derived memory B cells. Vaccine, 27, 5728–5729 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Li, W., Wei, W., Zhu, S., Zhu, J., Shi, Y., Lin, T., Hao, E., Hayek, A., Deng, H., and Ding, S., Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell, 4, 16–19 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Lin, T., Ambasudhan, R., Yuan, X., Li, W., Hilcove, S., Abujarour, R., Lin, X., Hahm, H. S., Hao, E., Hayek, A., and Ding, S., A chemical platform for improved induction of human iPSCs. Nat. Methods, 6, 805–808 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Liu, A., Muggironi, M., Marin-Husstege, M., and Casaccia-Bonnefil, P., Oligodendrocyte process outgrowth in vitro is modulated by epigenetic regulation of cytoskeletal severing proteins. Glia, 44, 264–274 (2003).

    Article  PubMed  Google Scholar 

  • Ludwig, T. E., Bergendahl, V., Levenstein, M. E., Yu, J., Probasco, M. D., and Thomson, J. A., Feeder-independent culture of human embryonic stem cells. Nat. Methods, 3, 637–646 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Lypowy, J., Chen, I. Y., and Abdellatif, M., An alliance between Ras GTPase-activating protein, filamin C, and Ras GTPase-activating protein SH3 domain-binding protein regulates myocyte growth. J. Biol. Chem., 280, 25717–25728 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Lyssiotis, C. A., Chrette, B. D., and Lairson, L. L., Title, In Lakshmipathy, U., Chesnut, J. D., and Thyagarajan, B. (Eds.). Wiley, New York, p. 51, (2009a).

    Google Scholar 

  • Lyssiotis, C. A., Foreman, R. K., Staerk, J., Garcia, M., Mathur, D., Markoulaki, S., Hanna, J., Lairson, L. L., Charette, B. D., Bouchez, L. C., Bollong, M., Kunick, C., Brinker, A., Cho, C. Y., Schultz, P. G., and Jaenisch, R., Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc. Natl. Acad. Sci. U. S. A., 106, 8912–8917 (2009b).

    Article  PubMed  Google Scholar 

  • Lyssiotis, C. A., Lairson, L. L., Boitano, A. E., Wurdak, H., Zhu, S., and Schultz, P. G., Chemical control of stem cell fate and developmental potential. Angew. Chem. Int. Ed. Engl., 50, 200–242 (2011).

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, J. L. and Roskams, A. J., Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog. Neurobiol., 88, 170–183 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Maherali, N., Sridharan, R., Xie, W., Utikal, J., Eminli, S., Arnold, K., Stadtfeld, M., Yachechko, R., Tchieu, J., Jaenisch, R., Plath, K., and Hochedlinger, K., Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell, 1, 55–70 (2007).

    Article  PubMed  CAS  Google Scholar 

  • McKeveney, P. J., Hodges, V. M., Mullan, R. N., Maxwell, P., Simpson, D., Thompson, A., Winter, P. C., Lappin, T. R., and Maxwell, A. P., Characterization and localization of expression of an erythropoietin-induced gene, ERIC-1/ TACC3, identified in erythroid precursor cells. Br. J. Haematol., 112, 1016–1024 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Mitsui, K., Tokuzawa, Y., Itoh, H., Segawa, K., Murakami, M., Takahashi, K., Maruyama, M., Maeda, M., and Yamanaka, S., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 113, 631–642 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., and Kahn, M., Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc. Natl. Acad. Sci. U. S. A., 104, 5668–5673 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Monje, M., Mitra, S. S., Freret, M. E., Raveh, T. B., Kim, J., Masek, M., Attema, J. L., Li, G., Haddix, T., Edwards, M. S., Fisher, P. G., Weissman, I. L., Rowitch, D. H., Vogel, H., Wong, A. J., and Beachy, P. A., Hedgehog-responsive candidate cell of origin for diffuse intrinsic pontine glioma. Proc. Natl. Acad. Sci. U. S. A., 108, 4453–4458 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Murry, C. E. and Keller, G., Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell, 132, 661–680 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., Okita, K., Mochiduki, Y., Takizawa, N., and Yamanaka, S., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol., 26, 101–106 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Nichols, J. and Ying, Q. L., Derivation and propagation of embryonic stem cells in serum- and feeder-free culture. Methods Mol. Biol., 329, 91–98 (2006).

    PubMed  Google Scholar 

  • Niwa, H., Burdon, T., Chambers, I., and Smith, A., Selfrenewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev., 12, 2048–2060 (1998).

    Article  PubMed  CAS  Google Scholar 

  • North, T. E., Goessling, W., Walkley, C. R., Lengerke, C., Kopani, K. R., Lord, A. M., Weber, G. J., Bowman, T. V., Jang, I. H., Grosser, T., Fitzgerald, G. A., Daley, G. Q., Orkin, S. H., and Zon, L. I., Prostaglandin E2 regulates vertebrate haematopoietic stem cell homeostasis. Nature, 447, 1007–1011 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Okita, K., Ichisaka, T., and Yamanaka, S., Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313–317 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Oliveira, F., Bellesini, L., Defino, H., da Silva Herrero, C., Beloti, M., and Rosa, A., Hedgehog signaling and osteoblast gene expression are regulated by purmorphamine in human mesenchymal stem cells. J. Cell. Biochem., 113, 204–208 (2012).

    Article  PubMed  CAS  Google Scholar 

  • Peled, T., Landau, E., Prus, E., Treves, A. J., Nagler, A., and Fibach, E., Cellular copper content modulates differentiation and self-renewal in cultures of cord blood-derived CD34+ cells. Br. J. Haematol., 116, 655–661 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Peled, T., Landau, E., Mandel, J., Glukhman, E., Goudsmid, N. R., Nagler, A., and Fibach, E., Linear polyamine copper chelator tetraethylenepentamine augments long-term ex vivo expansion of cord blood-derived CD34+ cells and increases their engraftment potential in NOD/SCID mice. Exp. Hematol., 32, 547–555 (2004a).

    Article  PubMed  CAS  Google Scholar 

  • Peled, T., Mandel, J., Goudsmid, R. N., Landor, C., Hasson, N., Harati, D., Austin, M., Hasson, A., Fibach, E., Shpall, E. J., and Nagler, A., Pre-clinical development of cord bloodderived progenitor cell graft expanded ex vivo with cytokines and the polyamine copper chelator tetraethylenepentamine. Cytotherapy, 6, 344–355 (2004b).

    Article  PubMed  CAS  Google Scholar 

  • Piekorz, R. P., Hoffmeyer, A., Duntsch, C. D., McKay, C., Nakajima, H., Sexl, V., Snyder, L., Rehg, J., and Ihle, J. N., The centrosomal protein TACC3 is essential for hematopoietic stem cell function and genetically interfaces with p53-regulated apoptosis. EMBO J., 21, 653–664 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Pieters, T., Haenebalcke, L., Hochepied, T., D’Hont, J., Haigh, J. J., van Roy, F., and van Hengel, J., Efficient and User-Friendly Pluripotin-based Derivation of Mouse Embryonic Stem Cells. Stem Cell Rev., DOI 10.1007/ s12015-011-9323-x (2011).

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., and Marshak, D. R., Multilineage potential of adult human mesenchymal stem cells. Science, 284, 143–147 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Qi, X., Li, T. G., Hao, J., Hu, J., Wang, J., Simmons, H., Miura, S., Mishina, Y., and Zhao, G. Q., BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proc. Natl. Acad. Sci. U. S. A., 101, 6027–6032 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Rosania, G. R., Chang, Y. T., Perez, O., Sutherlin, D., Dong, H., Lockhart, D. J., and Schultz, P. G., Myoseverin, a microtubule-binding molecule with novel cellular effects. Nat. Biotechnol., 18, 304–308 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Sachinidis, A., Sotiriadou, I., Seelig, B., Berkessel, A., and Hescheler, J., A chemical genetics approach for specific differentiation of stem cells to somatic cells: a new promising therapeutical approach. Comb. Chem. High Throughput Screen, 11, 70–82 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Saraiya, M., Nasser, R., Zeng, Y., Addya, S., Ponnappan, R. K., Fortina, P., Anderson, D. G., Albert, T. J., Shapiro, I. M., and Risbud, M. V., Reversine enhances generation of progenitor-like cells by dedifferentiation of annulus fibrosus cells. Tissue Eng. Part A, 16, 1443–1455 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., and Brivanlou, A. H., Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat. Med., 10, 55–63 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Saxe, J. P., Wu, H., Kelly, T. K., Phelps, M. E., Sun, Y. E., Kornblum, H. I., and Huang, J., A phenotypic small-molecule screen identifies an orphan ligand-receptor pair that regulates neural stem cell differentiation. Chem. Biol., 14, 1019–1030 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Schneider, J. W., Gao, Z., Li, S., Farooqi, M., Tang, T. S., Bezprozvanny, I., Frantz, D. E., and Hsieh, J., Small-molecule activation of neuronal cell fate. Nat. Chem. Biol., 4, 408–410 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Shen, S., Li, J., and Casaccia-Bonnefil, P., Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J. Cell Biol., 169, 577–589 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Desponts, C., Do, J. T., Hahm, H. S., Scholer, H. R., and Ding, S., Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with smallmolecule compounds. Cell Stem Cell, 3, 568–574 (2008a).

    Article  PubMed  CAS  Google Scholar 

  • Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Scholer, H. R., and Ding, S., A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2, 525–528 (2008b).

    Article  PubMed  CAS  Google Scholar 

  • Sinha, S. and Chen, J. K., Purmorphamine activates the Hedgehog pathway by targeting Smoothened. Nat. Chem. Biol., 2, 29–30 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Spangrude, G. J., Heimfeld, S., and Weissman, I. L., Purification and characterization of mouse hematopoietic stem cells. Science, 241, 58–62 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Styner, M., Sen, B., Xie, Z., Case, N., and Rubin, J., Indomethacin promotes adipogenesis of mesenchymal stem cells through a cyclooxygenase independent mechanism. J. Cell. Biochem., 111, 1042–1050 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K. and Yamanaka, S., Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka, T., Tomoda, K., and Yamanaka, S., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861–872 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Taylor, S. M. and Jones, P. A., Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell, 17, 771–779 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Tesar, P. J., Chenoweth, J. G., Brook, F. A., Davies, T. J., Evans, E. P., Mack, D. L., Gardner, R. L., and McKay, R. D., New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Thomas, G. L. and Johannes, C. W., Natural product-like synthetic libraries. Curr. Opin. Chem. Biol., 15, 516–522 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., and Jones, J. M., Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145–1147 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Thorne, N., Auld, D. S., and Inglese, J., Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr. Opin. Chem. Biol., 14, 315–324 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Vallier, L., Alexander, M., and Pedersen, R. A., Activin/ Nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J. Cell Sci., 118, 4495–4509 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Wagers, A. J. and Conboy, I. M., Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis. Cell, 122, 659–667 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Warashina, M., Min, K. H., Kuwabara, T., Huynh, A., Gage, F. H., Schultz, P. G., and Ding, S., A synthetic small molecule that induces neuronal differentiation of adult hippocampal neural progenitor cells. Angew. Chem. Int. Ed. Engl., 45, 591–593 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Weissman, I. L., Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science, 287, 1442–1446 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Wernig, M., Meissner, A., Cassady, J. P., and Jaenisch, R., c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell, 2, 10–12 (2008).

    Article  PubMed  CAS  Google Scholar 

  • West, M. D., Sargent, R. G., Long, J., Brown, C., Chu, J. S., Kessler, S., Derugin, N., Sampathkumar, J., Burrows, C., Vaziri, H., Williams, R., Chapman, K. B., Larocca, D., Loring, J. F., and Murai, J., The ACTCellerate initiative: large-scale combinatorial cloning of novel human embryonic stem cell derivatives. Regen. Med., 3, 287–308 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Ding, S., Ding, Q., Gray, N. S., and Schultz, P. G., A small molecule with osteogenesis-inducing activity in multipotent mesenchymal progenitor cells. J. Am. Chem. Soc., 124, 14520–14521 (2002).

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Walker, J., Zhang, J., Ding, S., and Schultz, P. G., Purmorphamine induces osteogenesis by activation of the hedgehog signaling pathway. Chem. Biol., 11, 1229–1238 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Wurdak, H., Zhu, S., Min, K. H., Aimone, L., Lairson, L. L., Watson, J., Chopiuk, G., Demas, J., Charette, B., Halder, R., Weerapana, E., Cravatt, B. F., Cline, H. T., Peters, E. C., Zhang, J., Walker, J. R., Wu, C., Chang, J., Tuntland, T., Cho, C. Y., and Schultz, P. G., A small molecule accelerates neuronal differentiation in the adult rat. Proc. Natl. Acad. Sci. U. S. A., 107, 16542–16547 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Xu, Y., Shi, Y., and Ding, S., A chemical approach to stemcell biology and regenerative medicine. Nature, 453, 338–344 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Yang, M., Li, K., Ng, P. C., Chuen, C. K., Lau, T. K., Cheng, Y. S., Liu, Y. S., Li, C. K., Yuen, P. M., James, A. E., Lee, S. M., and Fok, T. F., Promoting effects of serotonin on hematopoiesis: ex vivo expansion of cord blood CD34+ stem/ progenitor cells, proliferation of bone marrow stromal cells, and antiapoptosis. Stem Cells, 25, 1800–1806 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q. L., Nichols, J., Chambers, I., and Smith, A., BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115, 281–292 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Ying, Q. L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P., and Smith, A., The ground state of embryonic stem cell self-renewal. Nature, 453, 519–523 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Young, J. C., Wu, S., Hansteen, G., Du, C., Sambucetti, L., Remiszewski, S., O’Farrell, A. M., Hill, B., Lavau, C., and Murray, L. J., Inhibitors of histone deacetylases promote hematopoietic stem cell self-renewal. Cytotherapy, 6, 328–336 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Yu, P. B., Hong, C. C., Sachidanandan, C., Babitt, J. L., Deng, D. Y., Hoyng, S. A., Lin, H. Y., Bloch, K. D., and Peterson, R. T., Dorsomorphin inhibits BMP signals required for embryogenesis and iron metabolism. Nat. Chem. Biol., 4, 33–41 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Zaharevitz, D. W., Gussio, R., Leost, M., Senderowicz, A. M., Lahusen, T., Kunick, C., Meijer, L., and Sausville, E. A., Discovery and initial characterization of the paullones, a novel class of small-molecule inhibitors of cyclin-dependent kinases. Cancer Res., 59, 2566–2569 (1999).

    PubMed  CAS  Google Scholar 

  • Zhao, C., Deng, W., and Gage, F. H., Mechanisms and functional implications of adult neurogenesis. Cell, 132, 645–660 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Zheng, X. S., Chan, T. F., and Zhou, H. H., Genetic and genomic approaches to identify and study the targets of bioactive small molecules. Chem. Biol., 11, 609–618 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, B. B., Zhang, H., Damelin, M., Geles, K. G., Grindley, J. C., and Dirks, P. B., Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat. Rev. Drug Discov., 8, 806–823 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Q., Dalgard, C. L., Wynder, C., and Doughty, M. L., Histone deacetylase inhibitors SAHA and sodium butyrate block G1-to-S cell cycle progression in neurosphere formation by adult subventricular cells. BMC Neurosci., 12, 50 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., LeBoff, M. S., and Glowacki, J., Vitamin D metabolism and action in human bone marrow stromal cells. Endocrinology, 151, 14–22 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S., Wurdak, H., Wang, J., Lyssiotis, C. A., Peters, E. C., Cho, C. Y., Wu, X., and Schultz, P. G., A small molecule primes embryonic stem cells for differentiation. Cell Stem Cell, 4, 416–426 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Zhu, S., Wurdak, H., and Schultz, P. G., Directed embryonic stem cell differentiation with small molecules. Future Med. Chem., 2, 965–973 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-gyu Nam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, Y., Nam, Tg. Chemical biology in stem cell research. Arch. Pharm. Res. 35, 281–297 (2012). https://doi.org/10.1007/s12272-012-0208-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0208-6

Key words

Navigation