Elsevier

Life Sciences

Volume 48, Issue 21, 1991, Pages 1991-2003
Life Sciences

Minireview
Opioid receptor-coupled second messenger systems

https://doi.org/10.1016/0024-3205(91)90154-4Get rights and content

Abstract

Although pharmacological data provide strong evidence for different types of opioid receptors (e.g., mu, delta, and kappa), they share many common properties in their ability to couple to second messenger systems. All opioid receptor types are coupled to G-proteins, since agonist binding is diminished by guanine nucleotides and agonist-stimulated GTPase activity has been identified in several preparations. Moreover, all three types inhibit adenylyl cyclase. This second messenger system has been identified for opioid receptors in both isolated brain membranes and in transformed cell culture. Studies with chronic treatment with opioid agonists suggest that the coupling of receptors with G-proteins and second messenger effectors may play important roles in development of opioid tolerance.

References (141)

  • A.G. Gilman

    Cell

    (1984)
  • L. Birnbaumer et al.

    Biochim Biophys Acta

    (1990)
  • D.R. Manning et al.

    J. Biol. Chem.

    (1983)
  • P.C. Sternweis et al.

    J. Biol. Chem.

    (1984)
  • E.J. Neer et al.

    J. Biol. Chem.

    (1984)
  • V.A. Florio et al.

    J. Biol. Chem.

    (1985)
  • R.A. Cerione et al.

    J. Biol. Chem.

    (1986)
  • J.D. Hildebrandt et al.

    J. Biol. Chem.

    (1985)
  • T.T. Amatruda et al.

    J. Biol. Chem.

    (1988)
  • J.K. Northup et al.

    J. Biol. Chem.

    (1983)
  • J.K. Northup et al.

    J. Biol. Chem.

    (1983)
  • T. Nakamura et al.

    J. Biol. Chem.

    (1985)
  • A.J. Blume

    Life Sci.

    (1978)
  • K.J. Mack et al.

    Brain Res. Bull.

    (1985)
  • M.J. Clark et al.

    Life Sci.

    (1986)
  • M.J. Clark et al.

    Neuropharm.

    (1987)
  • T. Katada et al.

    J. Biol. Chem.

    (1986)
  • T. Sunyer et al.

    J. Biol. Chem.

    (1984)
  • G. Milligan et al.

    J. Biol. Chem.

    (1985)
  • V.C. Yu et al.

    Neurosci. Lett.

    (1986)
  • C.C. Barchfeld et al.

    Biochem. Biophys. Res. Commun.

    (1984)
  • J.P. Fedynyshyn et al.

    Brain Res.

    (1989)
  • J.A. Hsia et al.

    J. Biol. Chem.

    (1984)
  • M. Wuster et al.

    Biochem. Biophys. Res. Commun.

    (1984)
  • M.E. Abood et al.

    Brain Res.

    (1987)
  • H. Ueda et al.

    FEBS Lett.

    (1990)
  • B. Hamprecht

    Int. Rev. Cytol.

    (1977)
  • P.Y. Law et al.

    J. Biol. Chem.

    (1985)
  • S. Ott et al.

    Biochem. Pharmacol.

    (1989)
  • V.C. Yu et al.

    J. Biol. Chem.

    (1986)
  • G.P. Tell et al.

    FEBS Lett.

    (1975)
  • R.G. Van Inwegen et al.

    Life Sci.

    (1975)
  • S.R. Childers et al.

    Life Sci.

    (1983)
  • R.A. North et al.
  • R.A. Gross et al.
  • M. Wolleman

    Prog. Neurobiol.

    (1981)
  • S.R. Childers
  • D.R. Marckel et al.
  • M. Rodbell

    Nature

    (1980)
  • H. Bourne

    Cold Spring Harb. Quant. Biol.

    (1988)
  • E.J. Neer et al.

    Nature

    (1988)
  • R.S. Kent et al.

    Mol. Pharmacol.

    (1980)
  • H. Itoh et al.
  • B.K. Kobilka et al.

    Science

    (1988)
  • S. Tsai et al.

    Biochemistry

    (1987)
  • J. Hescheler et al.

    Nature

    (1987)
  • G.L. Wheeler et al.
  • B.K.-K. Fung et al.
  • J.P. McGrath et al.

    Nature

    (1984)
  • D.E. Logothetis et al.

    Nature

    (1987)
  • Cited by (437)

    • Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics

      2023, Neuropharmacology
      Citation Excerpt :

      Presynaptic MOR signaling has been studied extensively in the vlPAG because activation of vlPAG output neurons occurs through inhibition of GABA release in the vlPAG, termed disinhibition (Lau and Vaughan, 2014). MORs inhibit both glutamate and GABA release from presynaptic terminals impinging on vlPAG neurons (Chieng and Christie, 1994b; Vaughan and Christie, 1997; Vaughan et al., 1997b). Presynaptic MORs also disinhibit RVM neurons via inhibition of GABA release (Pan et al., 1990).

    • Nanobiosensors for detection of opioids: A review of latest advancements

      2022, European Journal of Pharmaceutics and Biopharmaceutics
      Citation Excerpt :

      Opioids activate the pain pathways of serotonin and noradrenaline from the brain stem. The stimulation of NMDA receptors leads to tolerance development and neuropathic pain [36,37]. Both µ and δ opiates suppress the spinal nociceptive reflex, reducing the spine's neuronal activity via noxious stimuli.

    View all citing articles on Scopus
    View full text