Skip to main content
Log in

The Choroid Plexuses and the Barriers Between the Blood and the Cerebrospinal Fluid

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The fluid homeostasis of the brain depends both on the endothelial blood–brain barrier and on the epithelial blood–cerebrospinal fluid (CSF) barrier located at the choroid plexuses and the outer arachnoid membrane.

2. The brain has two fluid environments: the brain interstitial fluid, which surrounds the neurons and glia, and the CSF, which fills the ventricles and external surfaces of the central nervous system.

3. CSF acts as a fluid cushion for the brain and as a drainage route for the waste products of cerebral metabolism.

4. Recent findings suggest that CSF may also act as a “third circulation” conveying substances secreted into the CSF rapidly to many brain regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  • Alm, A., and Bill, A. (1973). The effect of stimulation of the cervical sympathetic chain on retinal oxygen tension and on uveal, retinal and cerebral blood flow in cats. Acta Physiol. Scand. 88:84-94.

    Google Scholar 

  • Andres, K. H. (1967). Uber die Feinstruktur der Arachnoidea und Dura mater von Mammalia. Z. Zellforsch. 79:272-295.

    Google Scholar 

  • Bairamian, D., Johanson, C. E., Parmelee, J. T., and Epstein, M. H. (1991). Potassium cotransport with sodium and chloride in the choroid plexuses. J. Neurochem. 56:1623-1629.

    Google Scholar 

  • Bito, L. Z., Bradbury, M. W. B., and Davson, H. (1966). Factors affecting the distribution of iodide and bromide in the central nervous system. J. Physiol. 185:323-354.

    Google Scholar 

  • Bradley, R. D., and Semple, S. J. G. (1962). A comparison of certain acid base characteristics of arterial blood, jugular venous blood and cerebrospinal fluid in man, and the effect on them of some acute and chronic acid-base disturbances. J. Physiol. 160:381-391.

    Google Scholar 

  • Chodobski, A., Szmydynger-Chodobska, J., Epstein, M. H., and Johanson, C. E. (1995). The role of angiotensin II in the regulation of blood flow to choroid plexuses and cerebrospinal fluid formation in the rat. J. Cereb. Blood Flow Metab. 15:143-151.

    Google Scholar 

  • Chodobski, A., Loh, Y. P., Corsetti, S., Szmydynger-Chodobska, J., Johanson, C. E., Lim, Y.-P., and Monfils, P. R. (1997). The presence of arginine vasopressin and its mRNA in rat choroid plexus epithelium. Mol. Brain Res. 48:67-72.

    Google Scholar 

  • Christensen, O., Simon, M., and Randley, T. (1989). Anion channels in a leaky epithelium: A patch clamp study of choroid plexus. Pflügers Arch. 415:37-46.

    Google Scholar 

  • Cserr, H. F., Cooper, D. N., and Milhorat, T. H. (1977). Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp. Eye Res. 25 (Suppl.):461-473.

    Google Scholar 

  • Cserr, H. F., Cooper, D. N., Suri, P. K., and Patlak, C. S. (1981). Efflux of radiolabeled polyethylene glycols and albumin from rat brain. Am. J. Physiol. 240:F319-F328.

    Google Scholar 

  • Cushing, H. (1926). The Third Circulation, Oxford University Press, London.

    Google Scholar 

  • Davson, H. (1955). A comparative study of the aqueous humour and cerebrospinal fluid in the rabbit. J. Physiol. 129:111-133.

    Google Scholar 

  • Davson, H., and Segal, M. B. (1970). The effects of some inhibitors and accelerators of sodium transport on the turnover of 22Na in the cerebrospinal fluid and the brain. J. Physiol. 209:131-153.

    Google Scholar 

  • Davson, H., and Segal, M. B. (1996). Physiology of the CSF and Blood-Brain Barriers, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Davson, H., Zlokovic, B., Rackic, Lj., and Segal, M. B. (1993). An Introduction to the Blood-Brain Barrier, Macmillan Press, Basingstoke, Hampshire.

    Google Scholar 

  • Deane, R., and Segal, M. B. (1985). The transport of sugars across the perfused choroid plexus of the sheep. J. Physiol. 362:245-260.

    Google Scholar 

  • Del Bigio, M. R. (1995). The ependyma: A protective barrier between brain and cerebrospinal fluid. Glia 14:1-13.

    Google Scholar 

  • Deng, Q. S., and Johanson, C. E. (1989). Stilbenes inhibit exchange of chloride between blood, choroid plexus and cerebrospinal fluid. Brain Res. 501:183-187.

    Google Scholar 

  • Epstein, M. H., Feldman, A. M., and Brusilow, S. W. (1977). Cerebrospinal fluid production: Stimulation by cholera toxin. Science 196:1012-1013.

    Google Scholar 

  • Ernst, S. A., Palacios, J. R., and Siegel, G. J. (1986). Immunocytochemical localization of Na+, K+-ATPase catalytic polypeptide in mouse choroid plexus. J. Histochem. Cytochem. 34:189-195.

    Google Scholar 

  • Faraci, A. M., Mayhan, W. G., and Heistad, D. D. (1990). Vascular effects of acetazolamide on the choroid plexus. J. Pharmacol. Exp. Ther. 254:23-27.

    Google Scholar 

  • Felgenhauer, K. (1974). Protein size and cerebrospinal fluid composition. Klin. Wochenschr. 52:1158-1164.

    Google Scholar 

  • Garner, C., and Brown, P. D. (1992). Two types of chloride channel in the apical membrane of rat choroid plexus epithelial cells. Brain Res. 591:137-145.

    Google Scholar 

  • Ghersi-Egea, J.-F., Finnegan, W., Chen, J.-L., and Fenstermacher, J. D. (1996). Rapid distribution of intraventricularly administered sucrose into cerebrospinal fluid cisterns via subarachnoid velae in rat. Neuroscience 75(4):1271-1288.

    Google Scholar 

  • Gross, P. M., and Weindl, A. (1987). Peering through the windows of the brain. J. Cereb. Blood Flow Metab. 7:663-672.

    Google Scholar 

  • Gründer, S., Thieman, A., Pusch, M., and Jentsch, T. J. (1992). Regions involved in the opening of ClC-2 chloride channel by voltage and cell volume. Nature 360:759-752.

    Google Scholar 

  • Habgood, M. D., Knott, G. W., Dziegielewska, K. M., and Saunders, N. R. (1993). The nature of the decrease in blood-cerebrospinal fluid barrier exchange during postnatal brain development in the rat. J. Physiol. 468:73-83.

    Google Scholar 

  • Hashimoto, P. H. (1988). Tracer in cisternal cerebrospinal fluid is soon detected in choroid plexus capillaries. Brain Res. 440:149-152.

    Google Scholar 

  • Johanson, C. E. (1988). The choroid plexus-arachnoid membrane-cerebrospinal fluid system. In Boulton, A. A., Baker, G. B., and Walz, W. (eds.), Neuromethods; The Neuronal Microenvironment, Humana Press, Clifton, NJ, pp. 33-104.

    Google Scholar 

  • Johanson, C. E., and Murphy, V. A. (1990). Acetazolamide and insulin alter choroid plexus epithelial cell [Na+], pH, and volume. Am. J. Physiol. 258:F1538-F1546.

    Google Scholar 

  • Johanson, C. E., Sweeney, S. M., Parmalee, J. T., and Epstein, M. H. (1990). Co-transport of sodium and chloride in the adult mammalian choroid plexus. Am. J. Physiol. 258: C211-C216.

    Google Scholar 

  • Keep, R. J., and Xiang, J. (1995). Choroid plexus potassium cotransport: Modulation by osmotic stress and external potassium. J. Neurochem. 64:2747-2754.

    Google Scholar 

  • Keep, R. J., Ennis, S. R., and Betz, A. L. (1998). Blood-brain barrier ion transport. In Pardridge, W. M. (ed.), An Introduction to the Blood-Brain Barrier: Methodology, Biology and Pathology, Cambridge University Press, Cambridge, pp. 207-213.

    Google Scholar 

  • Kibble, J. D., Trezise, A. E. O., and Brown, P. D. (1996). Properties of the cAMP-activated Cl-current in choroid plexus epithelial cells isolated from the rat. J. Physiol. 496(1):69-80.

    Google Scholar 

  • Kida, S., and Weller, R. O. (1993). Morphological basis for fluid transport through and around ependymal, arachnoidal, and glial cells. In Raimondi, A. (ed.), Principles of Pediatric Neurosurgery, Vol. IV. Intracranial Cyst Lesions, Springer, Berlin, pp. 37-52.

    Google Scholar 

  • Klarr, S. A., Ulanski, L. J., II, Stummer, W., Xiang, J., Betz, A. L., and Keep, R. F. (1997). The effects of hypo-and hyperkalemia on choroid plexus potassium transport. Brain Res. 758:39-44.

    Google Scholar 

  • Knott, G. W., Dziegielewska, K. M., Habgood, M. D., Li, Z. S., and Saunders, N. R. (1997). Albumin transfer across the choroid plexus of South American opossum (Monodelphis domestica). J. Physiol. 499(1):179-194.

    Google Scholar 

  • Kotera, T., and Brown, P. D. (1994). Evidence for two types of potassium current in rat choroid plexus epithelial cells. Pflügers Arch. 427:317-324.

    Google Scholar 

  • Lee, M. D., King, L. S., and Agre, P. (1997). The aquaporin family of water channel proteins in clinical medicine. Rev. Mol. Med. 76(3):141-156.

    Google Scholar 

  • Leusen, I. (1950). The influence of calcium, potassium and magnesium ions in cerebrospinal fluid on vasomotor system. J. Physiol. 110:319-329.

    Google Scholar 

  • Lin, A. Y.-J., Szmydynger-Chodobska, J., Rahman, M. P., Mayer, B., Monfils, P. R., Johanson, C. E., Lim, Y.-P., Corsetti, S., and Chodobski, A. (1996). Immunohistochemical localization of nitric oxide synthase in rat anterior choroidal artery, stromal blood microvessels, and choroid plexus epithelial cells. Cell Tissue Res. 285:411-418.

    Google Scholar 

  • Maren, T. H., and Broder, L. E. (1976). The role of carbonic anhydrase in anion secretion into cerebrospinal fluid. J. Pharmacol. Exp. Ther. 172:197-202.

    Google Scholar 

  • Masuzawa, T., Ohta, T., Kawakami, K., and Sato, F. (1985). Immunocytochemical localization of Na+, K+-ATPase in the canine choroid plexus. Brain 108:625-646.

    Google Scholar 

  • McConnell, H., and Bianchine, J. (1994). Cerebrospinal Fluid in Neurology and Psychiatry, Chapman and Hall Medical, London, pp. 1-322.

    Google Scholar 

  • Murphy, V. A., and Johanson, C. E. (1989a). Acidosis, acetazolamide, and amiloride: effects on 22Na transfer across blood-brain and blood-CSF barriers. J. Neurochem. 52:1058-1063.

    Google Scholar 

  • Murphy, V. A., and Johanson, C. E. (1989b). Alteration of sodium transport by the choroid plexus with amiloride. Biochim. Biophys. Acta 979:187-192.

    Google Scholar 

  • Nabeshima, S., Reese, T. S., Landis, D. M. D., and Brightman, M. W. (1975). Junctions in the meninges and marginal glia. J. Comp. Neurol. 164:127-170.

    Google Scholar 

  • Nathanson, J. A. (1980). β-Adrenergic-sensitive adenylate cyclase in choroid plexus: Properties and cellular localization. Mol. Pharmacol. 18:199-209.

    Google Scholar 

  • Nielsen, S., Marples, D., Frøkiaer, J., Knepper, M., and Agre, P. (1996). The aquaporin family of water channels in kidney: An update on physiology and pathophysiology of aquaporin-2. Kidney Int. 49:1718-1723.

    Google Scholar 

  • Nilsson, C., Lindvall-Axelsson, M., and Owman, C. (1991). Simultaneous and continuous measurement of choroid plexus blood flow and cerebrospinal fluid production. Effects of vasoactive intestinal polypeptide. J. Cereb. Blood Flow Metab. 11:861-867.

    Google Scholar 

  • Nilsson, C., Lindvall-Axelsson, M., and Owman, C. (1992a). Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res. Rev. 17:109-138.

    Google Scholar 

  • Nilsson, C., Stahlberg, F., Thomsen, C., Henriksen, O., Herning, M., and Owman, C. (1992b). Circadian variation in human cerebrospinal fluid production measured by magnetic resonance imaging. Am. J. Physiol. 262:R20-R24.

    Google Scholar 

  • Owman, C., and Lindvall, M. (1983). Sympathetic nervous control of CSF production in normal and hydocephalic animals and its relationship to cerebral blood volume and intracranial pressure. In Ishii, S., Nagai, H., and Brock, M. (eds.), Intracranial Pressure V, Springer, Berlin, pp. 10-28.

    Google Scholar 

  • Pappenheimer, J. R., Heisey, S. R., Jordan, E. F., and Downer, J. de C. (1962). Perfusion of the cerebral ventricular system in unanesthetized goats. Am. J. Physiol. 203:763-774.

    Google Scholar 

  • Prescott, L., and Brightman, M. W. (1998). Circumventricular organs of the brain. In Pardridge, W. M. (ed.), An Introduction to the Blood-Brain Barrier: Methodology, Biology and Pathology, Cambridge University Press, Cambridge, pp. 270-276.

    Google Scholar 

  • Preston, J. E., and Segal, M. B. (1990). The steady-state amino acid fluxes across the perfused choroid plexus of the sheep. Brain Res. 525:275-279.

    Google Scholar 

  • Preston, J. E., Segal, M. B., Walley, G. J., and Zlokovic, B. V. (1989). Neutral amino acid uptake by the isolated sheep choroid plexus. J. Physiol. 408:31-43.

    Google Scholar 

  • Quinton, P. M., Wright, E. M., and Tormey, J. McD. (1973). Localization of sodium pumps in the choroid plexus epithelium. J. Cell. Biol. 58:724-730.

    Google Scholar 

  • Rapoport, S. I. (1983). Passage of proteins from blood to cerebrospinal fluid. In Wood, J. H. (ed.), Neurobiology of Cerebrospinal Fluid, Vol. 2, Plenum Press, New York, pp. 233-245.

    Google Scholar 

  • Reiber, H. (1994). Flow rate of cerebrospinal fluid (CSF)-A concept common to normal blood-CSF barrier function and to dysfunction in neurological diseases. J. Neurol. Sci. 122:189-203.

    Google Scholar 

  • Reiber, H. (1995). External quality assessment in clinical neurochemistry: Survey of analysis for cerebrospinal fluid (CSF) proteins based on CSF/serum quotients. Clin. Chem. 41:256-263.

    Google Scholar 

  • Rennels, M., Gregory, T. F., Blaumanis, O. R., Fujimoto, K., and Grady, P. A. (1985). Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res. 326:47-63.

    Google Scholar 

  • Saito, Y., and Wright, E. M. (1983). Bicarbonate transport across the frog choroid plexus and its control by cyclic nucleotides. J. Physiol. 336:635-648.

    Google Scholar 

  • Saito, Y., and Wright, E. M. (1984). Regulation of biocarbonate transport across the brush border membrane of the bull-frog choroid plexus. J. Physiol. 350:327-342.

    Google Scholar 

  • Saito, Y., and Wright, E. M. (1987). Regulation of intracellular chloride in bullfrog choroid plexus. Brain Res. 417:267-272.

    Google Scholar 

  • Schreiber, G., and Richardson S. J. (1997). The evolution of gene expression, structure and function of transthyretin. Comp. Biochem. Physiol. 115B:137-160.

    Google Scholar 

  • Segal, M. B. (1993). Extracellular and cerebrospinal fluids. J. Inher. Metab. Dis. 16:617-638.

    Google Scholar 

  • Segal, M. B. (1998). The blood-CSF barrier and the choroid plexus. In Pardridge, W. M. (ed.), An Introduction to the Blood-Brain Barrier: Methodology, Biology and Pathology, Cambridge University Press, Cambridge, pp. 251-258.

    Google Scholar 

  • Segal, M. B., and Burgess, M. C. (1974). A combined physiological and morphological study of the secretory process in the rabbit choroid plexus. J. Cell Sci. 14:339-350.

    Google Scholar 

  • Segal, M. B., and Pollay, M. (1978). The secretion of cerebrospinal fluid. Exp. Eye Res. 25(S):127-148.

    Google Scholar 

  • Southwell, B. R., Duan, W., Alcorn, D., Brack, C., Richardson, S. J., Köhrle, J., and Schreiber, G. (1993). Thyroxine transport to the brain: Role of protein syntheses by the choroid plexus. Endocrinology 133:2116-2126.

    Google Scholar 

  • Spector, R. (1980a). Thymidine transport in the central nervous system. J. Neurochem. 35:1092-1098.

    Google Scholar 

  • Spector, R. (1980b). Thymidine accumulation by choroid plexus in vitro. Arch. Biochem. Biophys. 205:85-93.

    Google Scholar 

  • Strikic, N., Klarica, M., Vladic, A., and Bulat, M. (1994). Effect of active transport on distribution and concentration of gradients of [3H]benzylpenicillin in the cerebrospinal fluid. Neurosci. Lett. 169:159-162.

    Google Scholar 

  • Thomas, S. A. (née Williams), and Segal, M. B. (1996). Identification of a saturable uptake system for deoxyribonucleosides at the blood-brain and blood-cerebrospinal fluid barriers. Brain Res. 741:230-239.

    Google Scholar 

  • Tripathi, S., and Boulpaep, E. L. (1989). Mechanisms of water transport by epithelial cells. Q. J. Exp. Physiol. 74:385-417.

    Google Scholar 

  • Watts, A. G., Sanchez-Watts, G., Emanuel, J. R., and Levenson, R. (1991). Cell-specific expression of mRNAs encoding Na+ K+-ATPase a-and b-subunit isoforms within the rat central nervous system. Proc. Natl. Acad. Sci. USA 88:7425-7429.

    Google Scholar 

  • Weisner, B., and Berhardt, W. (1978). Protein fractions of lumbar, cisternal, and ventricular cerebrospinal fluid. J. Neurol. Sci. 37:205-214.

    Google Scholar 

  • Williams, S. A., Davson, H., and Segal, M. B. (1996). Transport of the nucleoside, thymidine, in the central nervous system. The blood-cerebrospinal fluid and blood-brain barriers. In Greenwood, J., Begley, D., and Segal, M. B. (eds.), Concepts of the Blood-Brain Barrier, Plenum Press, New York, pp. 175-187.

    Google Scholar 

  • Zeuthen, T. (1991a). Water permeability of ventricular cell membrane in choroid plexus epithelium from Necturus maculosus. J. Physiol. 444:133-151.

    Google Scholar 

  • Zeuthen, T. (1991b). Secondary active transport of water across ventricular cell membrane of choroid plexus epithelium of Necturus maculosus. J. Physiol. 444:153-173.

    Google Scholar 

  • Zeuthen, T. (1994). Cotransport of K+, Cl-and H2O by membrane proteins from choroid plexus epithelium of Necturus maculosus. J. Physiol. 478(1):203-220.

    Google Scholar 

  • Zlokovic, B. V., Begley, D. J., Djuricic, B. M., and Mitrovic, D. M. (1986). Measurement of solute transport across the blood-brain barrier in the perfused guinea-pig brain: Method and application of N-methyl-a-aminoisobutyric acid. J. Neurochem. 46(5):1444-1451.

    Google Scholar 

  • Zlokovic, B. L., Mackic, J. B., Wang, L., McComb, J. G., and McDonough, A. (1993). Differential expression of Na,K-ATPase a and b subunit isoforms at the blood-brain barrier and the choroid plexus. J. Biol. Chem. 268:8019-8025.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segal, M.B. The Choroid Plexuses and the Barriers Between the Blood and the Cerebrospinal Fluid. Cell Mol Neurobiol 20, 183–196 (2000). https://doi.org/10.1023/A:1007045605751

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007045605751

Navigation