Skip to main content
Log in

Effect of Isoprostanes on Sympathetic Neurotransmission in the Human Isolated Iris-Ciliary Body

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Isoprostanes (IsoP's) are prostaglandin-like compounds that are derived from free-radical catalyzed peroxidation of arachidonic acid independent of the cyclcooxygenase enzyme. In the present study, we investigated the effect of IsoP's on norepinephrine (NE) release from human isolated iris-ciliary bodies. Isolated human iris-ciliary bodies were prepared for studies of [3H]NE release using the superfusion method. Both 8-iso-prostaglandin F (F2-IsoP) and the thromboxane (Tx) receptor agonist, U46619 enhanced field-stimulated [3H]NE release from isolated, superfused human iris-ciliary bodies without affecting basal tritium efflux. On the other hand, an equimolar concentration (10 μM) of 8-iso-prostaglandin E2 (E2-IsoP) inhibited evoked [3H]NE overflow. The Tx-receptor antagonist, SQ 29548 blocked the enhancements of electrically-evoked [3H]NE release induced by F2-IsoP and U46619. However, the inhibitory responses elicited by E2-IsoP was not antagonized by SQ 29548. We conclude that IsoP's can produce both excitatory and inhibitory effects on sympathetic neurotransmission in human isolated iris-ciliary bodies. The stimulatory effects of IsoP' on NE release may be mediated by Tx-receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Morrow, J. D., Hill, K. E., Burk, R. F., Nammour, T. M., Badr, K. F., and Roberts I, L. J. 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical catalyzed mechanism. Proc. Natl. Acad. Sci. 87:9383–9387.

    Google Scholar 

  2. Morrow, J. D., Awad, J. A., Boss, H. J., Blair, I. A., and Roberts, I. L. J. 1992. Non-cyclooxygenase-derived prostanoids (F2-isoprotanes) are formed in situ on phospholipids. Proc Natl Acad Sci. 89:110721–110725.

    Google Scholar 

  3. Morrow, J. D., Awad, J. A., Wu, A., Zackert, W. E., Daniel, V. C., and Roberts I, L. J. 1996. Nonenzymatic free radicalcatalyzed generation of thromboxane-like compounds (isothromboxanes) in vivo. J. Biol. Chem. 271 (38):23185–23190.

    Google Scholar 

  4. Morrow, J. D., Roberts, L. J. 1996. The Isoprotanes-Current knowledge and directions for future research. Biochem. Pharmacol. 51:1–9.

    Google Scholar 

  5. Mobert, J., Becker, B. F., Zahler, S. and Gerlach, E. 1997. Hemodynamic effects of isoprostanes (8-iso-prostaglandin F2alpha and E2) in isolated guinea pig hearts. J. Cardiovasc. Pharmacol. 29(6):789–794.

    Google Scholar 

  6. Birnbaum, D., Csukas, S., Costarides, A., and Green, K. 1987. 3-amino-triazole effects on the eye of young and adult rabbits in the presence and absence of hydrogen peroxide. Curr Eye Res. 61403–1414.

    Google Scholar 

  7. Riley, M. V. 1990. Physiological neutralization mechanisms and the response of the corneal endothelium to hydrogen peroxide. CLAO Journal. 16S16-S22.

    Google Scholar 

  8. Mibu, H., Nagato, M. and Hikida, M. 1994. A study on lipid peroxide-induced lens damage in vitro. Exp. Eye Res. 58: 85–90.

    Google Scholar 

  9. Opere, C., Tang, L., Imler, M., Kim, J., Okoye, M. and Ohia, S. 1997. Regulation of uveal sympathetic neurotransmission by peroxides. Invest. Ophthalmol. Vis. Sci. 38(5):842–847.

    Google Scholar 

  10. Salahudeen, A., Badr, K., Morrow, J. and Roberts, J. 1995. Hydrogen peroxide induces 21-aminosteroid-inhibitable F2-isoprostane production and cytolysis in renal tubular epithelial cells. J. Am. Soc. Nephrol. 6(4):1300–1303.

    Google Scholar 

  11. Opere, C. A., and Ohia, S. E. 1998. Prejunctional ?2-adrenoceptors and peroxide-induced potentiation of norepinephrine release from the bovine iris. Neurochem. Res. 23(8):1093–1098.

    Google Scholar 

  12. Zhan, G. L., Opere, C. A., Awe, S. O., Camras, C. B., and Ohia, S. E. 1999. Regulation of intraocular pressure and sympathetic neurotransmission by isoprostanes: role of thromboxanes. Inv. Ophthal. & Vis. Sci. 40(4):Abstract # 4350, p. 5826.

    Google Scholar 

  13. Anderson, F., Rice, S., Opere, C. A., Al-zadjali, K., and Ohia, S. E. 1996. Inhibitory effects of opioids on sympathetic neurotransmission in the bovine iris. Res. Commun. Alcohol Subst. Abuse. 17:79–89.

    Google Scholar 

  14. Longmire, A. W., Swift, L. L., Roberts, I. L. J., Awad, J. A., Burk, R. F. and Morrow, J. D. 1994. Effect of oxygen tension on the generation of F2-isoprostanes and malondialdehyde in peroxidizing rat liver microsomes. Biochem. Pharmacol. 471173–1177.

    Google Scholar 

  15. Reilly, M. P., Pratico, D., Delanty, N., DiMinno, G., Tremoli, E., Rader, D., Kapoor, S., Rokacho, J., Lawson, J. and Fitzgerald, G. A. 1998. Increased formation of distinct F2 isoprostanes in hypercholesterolemia. Circulation. 98(25):2822–2828.

    Google Scholar 

  16. Pratico, D., Basili, S., Vieri, M., Cordova, C., Violi, F. and Fitzgerald, G. A. 1998. Chronic obstructive pulmonary disease is associated with an increase in urinary levels of isoprostane F2?III, an index of oxidant stress. Am. J. Respir. Crit. Care Med. 158(6):1709–1714.

    Google Scholar 

  17. Hill, D. B., and Awad, J. A. 1999. Increased urinary F2-isoprostane excretion in alcoholic liver disease. Free Radic. Biol. Med. 26(5-6):656–660.

    Google Scholar 

  18. Morrow, J. D., Chen, Y., Brame, C. J., Yamg, J., Sanchez, S. C., Xu, J., Zackert, W. E., Awad, J. A., and Roberts, L. J. 1999. The isoprostanes: Unique prostaglandin-like products of free-radical-initiated lipid peroxidation. Drug Metab. Rev. 31(1): 117–139.

    Google Scholar 

  19. Takahashi, K., Nammour, T. M., Fukunaga, M., Ebert, J., Morrow, J. D., Roberts I, L. J., Hoovers, R. L. and Badir, K. R. 1992. Glomerular actions of a free-radical-generated novel prostaglandin, 8-epi-prostaglandin F2, in the rat. J. Clin. Invest. 90:136–141.

    Google Scholar 

  20. Kang, H. K., Morrow, J. D., Roberts, I. L. J., Newman, J. H., and Banerjee, M. 1993. Airway and vascular effects of 8-epiprostaglandin F2???in isolated perfused rat lung. J. Appl. Physiol. 74:460–465.

    Google Scholar 

  21. Trachte, G. J. 1986. Thromboxane agonist (U46619) potentiates norepinephrine efflux from adrenergic nerves. J. Pharmacol. Exp. Ther. 23:7473–477.

    Google Scholar 

  22. Stein, E. A., and Trachte, G. J. 1989. Thromboxane mimetics enhance adrenergic neuro-transmission in the rabbit-isolated portal vein. J. Cardiovasc. Pharmacol. 14:469–474.

    Google Scholar 

  23. Stein, E. A. and Trachte, G. J. 1990. Thromboxane A2 augments adrenergic neurotransmission. Eicosanoids. 3(4):205–211.

    Google Scholar 

  24. Fukunaga, M., Makita, N., Roberts, I. L. J., Morrow, J. D., Takahashi, K., and Badr, K. F. 1993. Evidence for the existence of F2-isoprostane receptors on rat vascular smooth muscl cells. Am J. Physiol. 264C:1619-C1624.

    Google Scholar 

  25. Kinsella, B. T., Fitzgerald, G. A., and O'Mahony, D. J. 1995. The isoprostane, 8-epi-prostaglandin F2?, induces elevation in intracellular calcium by activation of the cloned human thromboxane A2 receptor. FASEB J. 9:A40.

    Google Scholar 

  26. Kromer, B. M., and Tippins, J. R. 1996. Coronary artery constriction by the isoprostane 8-epi prostaglandin F2 alpha. Br. J. Pharmacol. 119(6):1276–1280.

    Google Scholar 

  27. Ko, F. N., Yu, S. M., Kang, Y. F., and Teng, C. M. 1995. Characterization of the thromboxane (TP-) receptor subtype involved in proliferation in cultured vascular smooth muscle cells of rat. Br. J. Pharmacol. 116(2):1801–1808.

    Google Scholar 

  28. Kromer, B. M., and Tippins, J. R. 1998. Actions of 8 epi prostaglandin F2???on isolated rat aorta. J. Cardiovasc. Pharmacol. 32(3):471–478.

    Google Scholar 

  29. Inoue, T., and Ito, Y. 1985. Pre and post junctional actions of prostaglandin I2, carbocyclic thromboxane A2 and leukotriene C4 in dog tracheal tissue. Br. J. Pharmacol. 84:289–298.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awe, S.O., Opere, C.A., Harris, L.C. et al. Effect of Isoprostanes on Sympathetic Neurotransmission in the Human Isolated Iris-Ciliary Body. Neurochem Res 25, 491–496 (2000). https://doi.org/10.1023/A:1007560025570

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007560025570

Navigation