Skip to main content
Log in

Synaptosomes Still Viable after 25 Years of Superfusion

  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Superfused synaptosomes have been utilized in studies of neurotransmitter release during 25 years. This review summarizes the aspects of neurotransmission that have been and could be successfully investigated with this technique. The major aim of the article is to draw attention on the versatility of superfused synaptosomes and to suggest how the system could be exploited in clarifying several aspects of synaptic neurochemistry including neurotransmitter transport, receptor localization, receptor-receptor interactions, functional aspects of multi-sited receptor complexes, receptor heterogeneity and mechanisms of neurotransmitter exocytosis-endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Raiteri, M., Angelini, F., and Levi, G. 1974. A simple apparatus for studying the release of neurotransmitter from synaptosomes. Eur. J. Pharmacol. 25:411-414.

    Google Scholar 

  2. Levi, G. and Raiteri, M. 1974. Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake. Nature 250:735-737.

    Google Scholar 

  3. Levi, G. and Raiteri, M. 1978. Modulation of γ-aminobutyric acid transport in nerve endings: role of extracellular γ-aminobutyric acid and of cationic fluxes. Proc. Natl. Acad. Sci. USA 75:2981-2985.

    Google Scholar 

  4. Levi, G., Poce, U., and Raiteri, M. 1976. Uptake and exchange of GABA and glutamate in isolated nerve endings. Pages 273-289, in Levi, G., Battistin, L., and Lajtha, A. (eds.), Transport Phenomena in the Nervous System, Plenum Press, New York.

    Google Scholar 

  5. Raiteri, M., del Carmine, R., Bertollini, A., and Levi, G. 1977. Effect of desmethylimipramine on the release of [3H]norepinephrine induced by various agents in hypothalamic synaptosomes. Mol. Pharmacol. 13:746-758.

    Google Scholar 

  6. Raiteri, M., Cerrito, F., Cervoni, A. M., and Levi, G. 1979. Dopamine can be released by two mechanisms differentially affected by the dopamine transport inhibitor nomifensine. J. Pharmacol. Exp. Ther. 208:195-202.

    Google Scholar 

  7. Maura, G., Gemignani, A., Versace, P., Martire, M., and Raiteri, M. 1982. Carrier-mediated and carrier-independent release of serotonin from isolated central nerve endings. Neurochem. Int. 4:219-224.

    Google Scholar 

  8. Levi, G., Patrizio, M., and Gallo, V. 1991. Release of endogenous and newly synthesized glutamate and of other amino acids induced by non-N-methyl-D-aspartate receptor activation in cerebellar granule cell cultures. J. Neurochem. 56:199-206.

    Google Scholar 

  9. Lonart, G. and Zigmond, M. J. 1991. High glutamate concentrations evoke Ca2+-independent dopamine release from striatal slices: a possible role of reverse dopamine transport. J. Pharmacol. Exp. Ther. 256:1132-1138.

    Google Scholar 

  10. Phillis, J. W., Walter, G. A., and Simpson, R. E. 1991. Brain adenosine and transmitter amino acid release from the ischemic rat cerebral cortex: effects of the adenosine deaminase inhibitor deoxycoformycin. J. Neurochem. 56:644-650.

    Google Scholar 

  11. Rubio, I., Torres, M., Miras-Portugal, M. T., and Sanchez-Prieto, J. 1991. Ca2+-independent release of glutamate during in vitro anoxia in isolated nerve terminals. J. Neurochem. 57:1159-1164.

    Google Scholar 

  12. Gobbi, M., Frittoli, E., Mennini, T., and Garattini, S. 1992. Releasing activities of d-fenfluramine and fluoxetine on rat hippocampal synaptosomes preloaded with [3H]serotonin. Naunyn-Schmiedeb. Arch. Pharmacol. 345:1-6.

    Google Scholar 

  13. Gobbi, M., Parazzoli, A., and Mennini, T. 1998. In vitro studies on the mechanism by which (+)-norfenfluramine induces serotonin and dopamine release from the vesicular storage pool. Naunyn-Schmiedeb. Arch. Pharmacol. 358:323-327.

    Google Scholar 

  14. Rudnick, G. and Wall, S. C. 1992. The molecular mechanism of ecstasy [3,4-methylenedioxy-methamphetamine (MDMA)]: serotonin transporters are targets for MDMA-induced serotonin release. Proc. Natl. Acad. Sci. USA 89:1817-1821.

    Google Scholar 

  15. Courtney, M. J., Enkvist, M. O. K., and Åkerman, K. E. O. 1995. The calcium response to the excitotoxin kainate is amplified by subsequent reduction of extracellular sodium. Neuroscience 68:1051-1057.

    Google Scholar 

  16. Lonart, G. and Johnson, K. M. 1995. Characterization of nitric oxide generator-induced hippocampal [3H]-norepinephrine release. II. The role of calcium, reverse norepinephrine transport and cyclic GMP. J. Pharmacol. Exp. Ther. 275:14-22.

    Google Scholar 

  17. Pifl, C., Drobny, H., Reither, H., Hornykiewicz, O., and Singer, E. A. 1995. Mechanism of the dopamine-releasing actions of amphetamine and cocaine: plasmalemmal dopamine transporter versus vesicular monoamine transporter. Mol. Pharmacol. 47:368-373.

    Google Scholar 

  18. Sulzer, D., Chen, T.-K., Lau, Y. Y., Kristensen, H., Rayport, S., and Ewing, A. 1995. Amphetamine redistributes dopamine from synaptic vesicles to the cytosol and promotes reverse transport. J. Neurosci. 15:4102-4108.

    Google Scholar 

  19. Gudelsky, G. A. and Nash, J. F. 1996. Carrier-mediated release of serotonin by MDMA: implications for serotonin-dopamine interactions. J. Neurochem. 66:243-249.

    Google Scholar 

  20. Lendvai, B., Sershen, A., Lajtha, A., Santha, E., Baranyi, M., and Vizi, E. S. 1996. Differential mechanisms involved in the effect of nicotinic agonists DMPP and lobeline to release [3H]5-HT from rat hippocampal slices. Neuropharmacology 35:1769-1777.

    Google Scholar 

  21. Rutledge, E. M. and Kimelberg, H. K. 1996. Release of [3H]Daspartate from primary astrocyte cultures in response to raised external potassium. J. Neurosci. 16:7803-7811.

    Google Scholar 

  22. Zuiderwijk, M., Veenstra, E., Lopes da Silva, F. H., and Ghijsen, W. E. J. M. 1996. Effects of uptake carrier blockers SK&F89976A and L-Trans-PDC on in vivo release of amino acids in rat hippocampus. Eur. J. Pharmacol. 307:275-282.

    Google Scholar 

  23. Crespi, D., Mennini, T., and Gobbi, M. 1997. Carrier-dependent and Ca2+-dependent 5-HT and dopamine release induced by (+)-amphetamine, 3,4-methylendioxymethamphetamine, p-chloroamphetamine and (+)-fenfluramine. Br. J. Pharmacol. 121:1735-1743.

    Google Scholar 

  24. Silvia, C. P., Jaber, M., King, G. G., Ellinwood, E. H., and Caron, M. G. 1997. Cocaine and amphetamine elicit differential effects in rats with a unilateral injection of dopamine transporter antisense oligodeoxynucleotides. Neuroscience 76:737-747.

    Google Scholar 

  25. Sonders, M. S., Zhu, S.-J., Zahniser, N. R., Kavanaugh, M. P., and Amara, S. G. 1997. Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J. Neurosci. 17:960-974.

    Google Scholar 

  26. Hanania, T. and Johnson, K. M. 1998. Regulation of neurotransmitter release by endogenous nitric oxide in striatal slices. Eur. J. Pharmacol. 359:111-117.

    Google Scholar 

  27. Jones, S. R., Gainetdinov, R. R., Wightman, R. M., and Caron, M. G. 1998. Mechanisms of amphetamine action revealed in mice lacking the dopamine transporter. J. Neurosci. 18:1979-1986.

    Google Scholar 

  28. Obrenovitch, T. P., Zilkha, E., and Urenjak, J. 1998. Effects of pharmacological inhibition of glutamate-uptake on ischaemia-induced glutamate efflux and anoxic depolarization latency. Naunyn-Schmiedeb. Arch. Pharmacol. 357:225-231.

    Google Scholar 

  29. Sequeira, S. M., Duarte, C. B., Carvalho, A. P., and Carvalho, C. M. 1998. Nitric oxide differentially affects the exocytotic and the carrier-mediated release of [3H]γ-aminobutyric acid in rat hippocampal synaptosomes. Mol. Brain Res. 55:337-340.

    Google Scholar 

  30. Soghomonian, J.-J. and Martin, D. L. 1998. Two isoforms of glutamate decarboxylase: Why? Trends Pharmacol. Sci. 19:500-505.

    Google Scholar 

  31. Storchak, L. G., Pozdnyakova, N. G., and Himmerlreich, N. H. 1998. Differential effect of protein kinase inhibitors on calciumdependent and calcium-independent 14C-GABA release from rat brain synaptosomes. Neuroscience 85:989-997.

    Google Scholar 

  32. Kimelberg, H., Seki, Y., Tranmer, B., Keller, R., and Feustel, P. 1999. Marked reduction of ischemia-induced EAA release by an inhibitor of the GLT-1 transporter and an anion channel antagonist. J. Neurochem. 72(suppl.):S34A.

    Google Scholar 

  33. Koch, H. P., Chamberlin, A. R., and Bridges, R. J. 1999. Nontransportable inhibitors attenuate reversal of glutamate uptake in synaptosomes following a metabolic insult. Mol. Pharmacol. 55:1044-1048.

    Google Scholar 

  34. Longuemare, M. C., Rose, C. R., Farrell, K., Ransom, B. R., Waxman, S. G., and Swanson, R. A. 1999. K+-induced reversal of astrocyte glutamate uptake is limited by compensatory changes in intracellular Na Neuroscience 93:285-292.

    Google Scholar 

  35. Adam-Vizi, V. 1992. External Ca2+-independent release of neurotransmitters. J. Neurochem. 58:395-405.

    Google Scholar 

  36. Bernath, S. 1992. Calcium-independent release of amino acid neurotransmitters: fact or artifact? Prog. Neurobiol. 38:57-91.

    Google Scholar 

  37. Attwell, D., Barbour, B., and Szatkowski, M. 1993. Nonvesicular release of neurotransmitter. Neuron 11:401-407.

    Google Scholar 

  38. Levi, G. and Raiteri, M. 1993. Carrier-mediated release of neurotransmitters. Trends Neurosci. 16:415-419.

    Google Scholar 

  39. Heron, A., Springhetti, V., Seylaz, J., and Lasbennes, F. 1995. Effects of a glutamate uptake inhibitor on glutamate release induced by veratridine and ischemia. Neurochem. Int. 26:593-599.

    Google Scholar 

  40. Longuemare, M. C. and Swanson, R. A. 1997. Net glutamate release from astrocytes is not induced by extracellular potassium concentrations attainable in brain. J. Neurochem. 69: 879-882.

    Google Scholar 

  41. Levy, L. M., Warr, O., and Attwell, D. 1998. Stoichiometry of the glial glutamate transporter GLT-1 expressed inducibly in a chinese hamster ovary cell line selected for low endogenous Na+-dependent glutamate uptake. J. Neurosci. 18:9620-9628.

    Google Scholar 

  42. Pisani, A., Calabresi, P., Tozzi, A., Bernardi, G., and Knopfel, T. 1998. Early sodium elevations induced by combined oxygen and glucose deprivation in pyramidal cortical neurons. Eur. J. Neurosci. 10:3572-3574.

    Google Scholar 

  43. Langer, S. Z. 1981. Presynaptic regulation of the release of catecholamines. Pharmacol. Rev. 32:337-362.

    Google Scholar 

  44. Langer, S. Z. 1997. 25 years since the discovery of presynaptic receptors: present knowledge and future perspectives. Trends Pharmacol. Sci. 18:95-99.

    Google Scholar 

  45. Starke, K. 1981. Presynaptic receptors. Annu. Rev. Pharmacol. Toxicol. 21:7-30.

    Google Scholar 

  46. Chesselet, M. F. 1984. Presynaptic regulation of neurotransmitter release in the brain: facts and hypothesis. Neuroscience 12: 347-375.

    Google Scholar 

  47. Raiteri, M., Marchi, M., and Maura, G. 1984. Release of catecholamines, serotonin and acetylcholine from isolated brain tissue. Pages 431-462, in Lajtha, A. (ed.) Handbook of Neurochemistry, vol. 6, Plenum Publishing Co., New York.

    Google Scholar 

  48. Illes, P. 1989. Modulation of transmitter and hormone release by multiple neuronal opioid receptors. Rev. Physiol. Biochem. Pharmacol. 112:139-233.

    Google Scholar 

  49. Starke, K., Göthert, M., and Kilbinger, H. 1989. Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol. Rev. 69:864-989.

    Google Scholar 

  50. Bonanno, G. and Raiteri, M. 1993. Multiple GABAB receptors. Trends Pharmacol. Sci. 14:259-261.

    Google Scholar 

  51. Mulder, A. H. and Schoffelmeer, A. N. M. 1993. Multiple opioid receptors and presynaptic modulation of neurotransmitter release in the brain. Pages 125-144, in Herz, A. (ed.), Handbook of Experimental Pharmacology, Springer Verlag, Berlin.

    Google Scholar 

  52. Ruzicka, B. B. and Jhamandas, K. H. 1993. Excitatory amino acid action on the release of brain neurotransmitters and neuromodulators: biochemical studies. Prog. Neurobiol. 40:223-247.

    Google Scholar 

  53. McGehee, D. S. and Role, L. W. 1996. Presynaptic ionotropic receptors. Curr. Opin. Neurobiol. 6:342-349.

    Google Scholar 

  54. Wu, L.-G. and Saggau, P. 1997. Presynaptic inhibition of elicited neurotransmitter release. Trends Neurosci. 20:204-212.

    Google Scholar 

  55. Malva, J. O., Carvalho, A. P., and Carvalho, C. M. 1998. Kainate receptors in hippocampal CA3 subregion: evidence for a role in regulating neurotransmitter release. Neurochem. Int. 32:1-6.

    Google Scholar 

  56. Miller, R. J. 1998. Presynaptic receptors. Annu. Rev. Pharmacol. Toxicol. 38:201-227.

    Google Scholar 

  57. Ribeiro, J. A. 1999. Adenosine A2A receptor interactions with receptors for other neurotransmitters and neuromodulators. Eur. J. Pharmacol. 375:101-113.

    Google Scholar 

  58. Russo, C., Marchi, M., Andrioli, G. C., Cavazzani, P., and Raiteri, M. 1993. Enhancement of glycine release from human brain cortex by acetylcholine acting at M4 muscarinic receptors. J. Pharmacol. Exp. Ther. 266:142-146.

    Google Scholar 

  59. Clarke, P. B. S. and Reuben, M. 1996. Release of [3H]noradrenaline from rat hippocampal synaptosomes by nicotine: mediation by different nicotinic receptor subtypes from striatal [3H]dopamine release. Br. J. Pharmacol. 117:595-606.

    Google Scholar 

  60. Pittaluga, A., Bonfanti, A., and Raiteri, M. 1997. Differential desensitization of ionotropic non-NMDA receptors having distinct neuronal location and function. Naunyn-Schmiedeb. Arch. Pharmacol. 356:29-38.

    Google Scholar 

  61. Marcoli, M., Maura, G., Munari, C., Ruelle, A., and Raiteri, M. 1999. Pharmacological diversity between native human 5-HT1B and 5-HT1D receptors sited on different neurons and involved in different functions. Br. J. Pharmacol. 126:607-612.

    Google Scholar 

  62. Schmid, G., Bonanno, G., and Raiteri, M. 1996. Functional evidence for two native GABAA receptor subtypes in adult rat hippocampus and cerebellum. Neuroscience 73:697-704.

    Google Scholar 

  63. Pittaluga, A. and Raiteri, M. 1990. Release-enhancing glycinedependent presynaptic NMDA receptors exist on noradrenergic terminals of hippocampus. Eur. J. Pharmacol. 191:231-234.

    Google Scholar 

  64. Pittaluga, A. and Raiteri, M. 1992. N-Methyl-D-aspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. I. Location on axon terminals and pharmacological characterization J. Pharmacol. Exp. Ther. 260:232-237.

    Google Scholar 

  65. Fink, K., Bönisch, H., and Göthert, M. 1990. Presynaptic NMDA receptors stimulate noradrenaline release in the rat cerebral cortex. Eur. J. Pharmacol. 185:115-117.

    Google Scholar 

  66. Desce, J. M., Godeheu, G., Galli, T., Artaud, F., Chéramy, A., and Glowinski, J. 1992. L-Glutamate-evoked release of dopamine from synaptosomes of the rat striatum: involvement of AMPA and N-methyl-D-aspartate receptors. Neuroscience 47: 333-339.

    Google Scholar 

  67. Pittaluga, A. and Raiteri, M. 1994. HIV-1 envelope protein gp120 potentiates NMDA-evoked noradrenaline release by a direct action at rat hippocampal and cortical noradrenergic nerve endings Eur. J. Neurosci. 6:1743-1749.

    Google Scholar 

  68. Pittaluga, A., Pattarini, R., Severi, P., and Raiteri, M. 1996. Human brain N-methyl-D-aspartate receptors regulating noradrenaline release are positively modulated by HIV-1 coat protein gp120. AIDS 10:463-468.

    Google Scholar 

  69. Pattarini, R., Pittaluga, A., and Raiteri, M. 1998. The human immunodeficiency virus-1 envelope protein gp120 binds through its V3 sequence to the glycine site of N-methyl-D-aspartate receptors mediating noradrenaline release in the hippocampus. Neuroscience 8:147-157.

    Google Scholar 

  70. Paudice, P., Gemignani, A., and Raiteri, M. 1998. Evidence for functional native NMDA receptors activated by glycine or D-serine alone in the absence of glutamatergic coagonist. Eur. J. Neuroscience 10:2934-2944.

    Google Scholar 

  71. Schmid, G., Bonanno, G., Raiteri, L., Sarviharju, M., Korpi, E. R., and Raiteri, M. 1999. Enhanced benzodiazepine and ethanol actions on cerebellar GABAA receptors mediating glutamate release in an alcohol-sensitive rat line. Neuropharmacology 38:1273-1279.

    Google Scholar 

  72. Schmid, G., Sala, R., Bonanno, G., and Raiteri, M. 1998. Neurosteroids may differentially affect the function of two native GABAA receptor subtypes in the rat brain. Naunyn-Schmiedeb. Arch. Pharmacol. 357:401-407.

    Google Scholar 

  73. Schmid, G., Chittolini, R., Raiteri, L., and Bonanno, G. 1999. Differential effects of zinc on native GABAA receptor function in rat hippocampus and cerebellum. Neurochem. Int. 34: 399-405.

    Google Scholar 

  74. Bonanno, G. and Raiteri, M. 1994. Release-regulating presynaptic heterocarriers. Prog. Neurobiol. 44:451-462.

    Google Scholar 

  75. Bonanno, G. and Raiteri, M. 1992. Are neurotransmitter carriers cell-specific markers? Trends Neurosci. 15:482.

    Google Scholar 

  76. Raiteri, M., Bonanno, G., and Pende, M. 1992. GABA and glycine modulate each other's release through heterocarriers sited on the releasing axon terminals of rat central nervous system. J. Neurochem. 59:1481-1489.

    Google Scholar 

  77. Jonas, P., Bischofberger, J., and Sandkuhler, J. 1998. Corelease of two fast neurotransmitters at a central synapse. Science 281:419-424.

    Google Scholar 

  78. Raiteri, M., Garrone, B., and Pittaluga, A. 1992. N-Methyl-Daspartic acid (NMDA) and non-NMDA receptors regulating hippocampal norepinephrine release. II. Evidence for functional cooperation and for coexistence on the same axon terminal J. Pharmacol. Exp. Ther. 260:238-242.

    Google Scholar 

  79. Wilkinson, G. F., Feniuk, W., and Humphrey, P. P. A. 1997. Characterization of human recombinant somatostatin sst5 receptors mediating activation of phosphoinositide metabolism. Br. J. Pharmacol. 121:91-96.

    Google Scholar 

  80. Chen, L. and Huang, L. Y. M. 1992. Protein kinase C reduces Mg2+block of NMDA-receptor channels as a mechanism of modulation. Nature 356:521-523.

    Google Scholar 

  81. Seeman, P. and Van Tol, H. H. M. 1994. Dopamine receptor pharmacology. Trends Pharmacol. Sci. 15:264-270.

    Google Scholar 

  82. Sokoloff, P. and Schwartz, J.-C. 1995. Novel dopamine receptors half a decade later. Trends Pharmacol. Sci. 16:270-275.

    Google Scholar 

  83. L'hirondel, M., Chéramy, A., Godeheu, G., Artaud, F., Saiardi, A., Borrelli, E., and Glowinski, J. 1998. Lack of autoreceptormediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res. 792: 253-262.

    Google Scholar 

  84. Lu, Y., Grady, S., Marks, M. J., Picciotto, M., Changeux, J.-P., and Collins, A. C. 1998. Pharmacological characterization of nicotinic receptor-stimulated GABA release from mouse brain synaptosomes. J. Pharmacol. Exp. Ther. 287:648-657.

    Google Scholar 

  85. Lonart, G., Janz, R., Johnson, K. M., and Südhof, T. C. 1998. Mechanism of action of rab3A in mossy fiber LTP. Neuron 21:1141-1150.

    Google Scholar 

  86. Ashton, A. C. and Dolly, J. O. 1991. Microtubule-dissociating drugs and A23187 reveal differences in the inhibition of synaptosomal transmitter release by botulinum neurotoxins types A and B. J. Neurochem. 56:827-835.

    Google Scholar 

  87. Link, E., Edelmann, L., Chou, J. H., Binz, T., Yamasaki, S., Eisel, U., Baumert, M., Südhof, T. C., Niemann, H., and Jahn, R. 1992. Tetanus toxin action: inhibition of neurotransmitter release linked to synaptobrevin proteolysis. Biochem. Biophys. Res. Comm. 189:1017-1023.

    Google Scholar 

  88. McMahon, H. T., Foran, P., Dolly, J. O., Verhage, M., Wiegant, V. M., and Nicholls, D. G. 1992. Tetanus toxin and botulinum type A and B inhibit glutamate, γ-aminobutyric acid, aspartate, and metenkephalin release from synaptosomes. J. Biol. Chem. 267:21338-21343.

    Google Scholar 

  89. Blasi, J., Binz, T., Yamasaki, S., Link, E., Niemann, H., and Jahn, R. 1994. Inhibition of neurotransmitter release by clostridial neurotoxins correlates with specific proteolysis of synaptosomal proteins. J. Physiol. (Paris) 88:235-241.

    Google Scholar 

  90. Fassio, A., Sala, R., Bonanno, G., Marchi, M., and Raiteri, M. 1999. Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F. Neuroscience 90:893-902.

    Google Scholar 

  91. Stecher, B., Hens, J. J., Weller, U., Gratzl, M., Gispen, W. H., and De Graan, P. N. 1992. Noradrenaline release from permeabilized synaptosomes is inhibited by the light chain of tetanus toxin. FEBS Lett. 312:192-194.

    Google Scholar 

  92. Nichols, R. A., Sihra, T. S., Czernik, A. J., Nairn, A. C., and Greengard, P. 1990. Calcium/calmodulin-dependent protein kinase II increases glutamate and noradrenaline release from synaptosomes. Nature 343:647-651.

    Google Scholar 

  93. Hens, J. J. H., De Wit, M., Boomsma, F., Mercken, M., Oestreicher, A. B., Gispen, W. H., and De Graan, P. N. E. (1995) N terminal-specific anti-B-50 (GAP-43) antibodies inhibit Ca2+-induced noradrenaline release, B-50 phosphorylation and dephosphorylation, and calmodulin binding. J. Neurochem. 64: 1127-1136.

    Google Scholar 

  94. Åkerman, K. E. O. and Heinonen, E. 1983. Qualitative measurements of cytosolic calcium ion concentration within isolated guinea pig nerve endings using entrapped arsenazo III. Biochim. Biophys. Acta 732:117-121.

    Google Scholar 

  95. Raiteri, M., Sala, R., Fassio, A., Rossetto, O., and Bonanno, G. 2000. Entrapping of impermeant probes of different size into nonpermeabilized synaptosomes as a method to study presynaptic mechanisms. J. Neurochem. 74:423-431.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raiteri, L., Raiteri, M. Synaptosomes Still Viable after 25 Years of Superfusion. Neurochem Res 25, 1265–1274 (2000). https://doi.org/10.1023/A:1007648229795

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1007648229795

Navigation