Skip to main content
Log in

Extravasation of Poly(amidoamine) (pamam) Dendrimers Across Microvascular Network Endothelium

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To study the influence of a controlled incremental increase in size and molecular weight of a series of poly(amidoamine) (PAMAM) dendrimers on their extravasation across the microvascular network endothelium.

Methods. A series of PAMAM dendrimers (generations 0-4) were fluorescently labeled using fluorescein isothiocyanate (FITC). Purification and fractionation of the fluorescently labeled polymers were done using size exclusion chromatography. The hamster cremaster muscle preparation was used as an in vivo model to study the extravasation process of the fluorescently labeled polymers. The extravasation process was visualized and recorded using intravital microscopy techniques. Analysis of the recorded experiments was done using Metamorph Imaging System. Extravasation of the fluorescently labeled polymers is reported in terms of their extravasation time (τ), i.e., the time needed for the fluorescence intensity in the interstitial tissue to reach 90% of the fluorescence intensity in the neighboring microvessels.

Results. Extravasation time (τ) describes the rate of microvascular extravasation of polymeric drug carriers across the microvascular endothelium into the interstitial tissue. Extravasation time (τ) of the studied PAMAM dendrimers showed size and molecular weight dependence. An increase in size and/or molecular weight of PAMAM dendrimers resulted in a corresponding exponential increase in the extravasation time (τ).

Conclusions. Extravasation of PAMAM dendrimers across the microvascular endothelium showed size and molecular weight dependence. Results suggest that in addition to size and molecular weight, other physicochemical properties of polymeric drug carriers such as molecular geometry and charge may influence their microvascular extravasation. Systematic studies of the influence of the physicochemical properties of polymeric drug carriers on their microvascular extravasation will aid in the design of novel macromolecular drug carriers with controlled extravasation profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. D. A. Tomalia. StarburstTM/cascade dendrimers: fundamental building blocks for a new nanoscopic chemistry set. Aldrichim. Acta. 26:91-101 (1993).

    Google Scholar 

  2. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith. Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19:2466-2468 (1986).

    Google Scholar 

  3. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith. A new class of polymers: starburst-dendritic macromolecules. Polymer J. 17:117-132 (1985).

    Google Scholar 

  4. D. A. Tomalia, A. M. Naylor, and W. A. Goddard, III. Starburst dendrimers: molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem., Int. Ed. Engl. 29:138-175 (1990).

    Google Scholar 

  5. N. A. Peppas. Star polymers and dendrimers: prospects of their use in drug delivery and pharmaceutical applications. Controlled Release Soc. Newsl. 12:12-13 (1995).

    Google Scholar 

  6. R. Delong, K. Stephenson, T. L. M. Fisher, S. Alahari, A. Nolting, and R. L. Juliano. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci. 86:762-764 (1997).

    Google Scholar 

  7. J. Haensler and F. C. Szoka. Polyamidoamine cascade polymers mediate efficient transfection of cells in culture. Bioconjugate Chem. 4:372-379 (1993).

    Google Scholar 

  8. M. X. Tang, C. T. Redemann, and F. C. Szoka. In vitro gene delivery by degraded polyamidamine dendrimers. Bioconjugate Chem. 7:703-714 (1996).

    Google Scholar 

  9. M. X. Tang and F. C. Szoka. The influence of polymer structure on the interactions of cationic polymers with DNA and morphology of the resulting complexes. Gene Ther. 4:823-832 (1997).

    Google Scholar 

  10. R. Wiwattanapatapee, R. D. Jee, and R. Duncan. PAMAM dendrimers as a potential oral drug delivery system: Dendrimer complexes with piroxicam. In Controlled Release of Bioactive Materials, Boston, MA, 1999, pp. 145-146.

  11. D. S. Wilbur, P. M. Pathare, D. K. Hamlin, K. R. Buhler, and R. L. Vessella. Biotin reagents for antibody pretargeting. 3. Synthesis, radioiodination, and evaluation of biotinylated starburst dendrimers. Bioconjugate Chem. 9:813-825 (1998).

    Google Scholar 

  12. K. Yu and P. S. Russo. Light scattering and fluorescence photobleaching recovery study of poly(amidoamine) cascade polymers in aquous solution. J. Polym. Sci., Polym. Phys. Ed. 34:1467-1475 (1996).

    Google Scholar 

  13. N. M. Roth and M. F. Kiani. A “Geographic Information Systems” based technique for the study of microvascular networks. Ann. Biomed. Eng. 27:42-47 (1999).

    Google Scholar 

  14. S. Baez. An open cremaster muscle preparation for the study of blood vessels by in vivo microscopy. Microvasc. Res. 5:384-394 (1973).

    Google Scholar 

  15. F. N. Miller, G. J. Tangelder, D. W. Slaaf, and R. S. Reneman. Quantitation of erythrocyte photohemolysis by light microscopy. Blood Cells 17:567-579 (1991).

    Google Scholar 

  16. F. N. Miller, D. E. Sims, D. A. Schuschke, and D. L. Abney. Differentiation of light-dye effects in the microcirculation. Microvasc. Res. 44:166-184 (1992).

    Google Scholar 

  17. P. G. deGennes and H. J. Hervet. Statistics of “Starburst” polymers. J. Phys. Lett. (Paris) 44:L351-L360 (1983).

    Google Scholar 

  18. M. G. Davidson and W. M. Deen. Hindered diffusion of water-soluble macromolecules in membranes. Macromolecules 21:3474-3481 (1988).

    Google Scholar 

  19. R. H. Adamson and G. Clough. Plasma proteins modify the endothelial cell glycocalyx of frog mesenteric microvessels. J. Physiol. (London) 445:473-486 (1992).

    Google Scholar 

  20. G. Clough and C. C. Michel. Quantitative comparisons of hydraulic permeability and endothelial intercellular cleft dimensions in single frog capillaries. J. Physiol. (London) 405:563-576 (1988).

    Google Scholar 

  21. F. E. Curry and C. C. Michel. A fiber matrix model of capillary permeability. Microvasc. Res. 20:96-99 (1980).

    Google Scholar 

  22. M. Simionescu, N. Simionescu, and G. E. Palade. Structural basis of permeability in sequential segments of the microvasculature of the diaphragm. II. Pathways followed by microperoxidase across the endothelium. Microvasc. Res. 15:17-36 (1978).

    Google Scholar 

  23. M. Simionescu and N. Simionescu. Ultrastructure of microvessel wall: functional correlations. In E. M. Renkin and C. Michel (eds.), Handbook of Physiology, American Physiological Society, Bethesda, 1984, pp. 41-101.

    Google Scholar 

  24. S. L. Wissig. Identification of the small pore in muscle capillaries. Acta Physiol. Scand. 463(Suppl.):33-44 (1979).

    Google Scholar 

  25. R. H. Adamson and C. C. Michel. Pathways through the intercellular clefts of frog mesenteric capillaries. J. Physiol. (London) 466:303-327 (1993).

    Google Scholar 

  26. J. R. Pappenheimer, E. M. Renkin, and J. M. Borrero. Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 167:13-46 (1951).

    Google Scholar 

  27. F. E. Curry, J. C. Rutledge, and J. F. Lenz. Modulation of microvessel wall charge by plasma glycoprotein orosomucoid. Am. J. Physiol. 257:H1354-H1359 (1989).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Ghandehari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Sayed, M., Kiani, M.F., Naimark, M.D. et al. Extravasation of Poly(amidoamine) (pamam) Dendrimers Across Microvascular Network Endothelium. Pharm Res 18, 23–28 (2001). https://doi.org/10.1023/A:1011066408283

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011066408283

Navigation