Skip to main content
Log in

Understanding Catecholamine Metabolism as a Guide to the Biochemical Diagnosis of Pheochromocytoma

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Nagatsu T, Levitt M, Udenfriend S. Tyrosine hydroxylase, the initial step in norepinephrine biosynthesis. J Biol Chem 1964;239:2910-2917.

    Google Scholar 

  2. Mezey E, Eisenhofer G, Harta G, Hansson S, Gould L, Hunyady B, Hoffman BJ. A novel nonneuronal catecholaminergic system: Exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci 1996;93:10377-10382.

    Google Scholar 

  3. Goldstein DS, Mezey E, Yamamoto T, Åneman A, Friberg P, Eisenhofer G. Is there a third peripheral catecholaminergic system Endogenous dopamine as an autocrine/paracrine substance derived from plasma DOPA and inactivated by conjugation. Hypertens Res 1995;18(Suppl 1):S93-S99.

    Google Scholar 

  4. Henry JP, Sagne C, Bedet C, Gasnier B. The vesicular monoamine transporter: from chromaffin granule to brain. Neurochem Int 1998;32:227-246.

    Google Scholar 

  5. Ahn NG, Klinman JP. Nature of rate-limiting steps in a compartmentalized enzyme system. Quantitation of dopamine transport and hydroxylation rates in resealed chromaffin granule ghosts. J Biol Chem 1989;264:12259-12265.

    Google Scholar 

  6. Hillarp NA, Hökfelt B. Evidence of adrenaline and noradrenaline in separate adrenal medullary cells. Acta Physiol Scand 1953;30:55-68.

    Google Scholar 

  7. Livett BG. Adrenal medullary chromaffin cells in vitro. Physiol Rev 1984;64:1103-1161.

    Google Scholar 

  8. Greenberg R, Rosenthal I, Falk GS. Electron microscopy of human tumors secreting catecholamines: correlation with biochemical data. J Neuropathol Exp Neurol 1969;28:475-500.

    Google Scholar 

  9. Lauper NT, Tyce GM, Sheps SG, Carney JA. Pheochromocytoma. Fine structural, biochemical and clinical observations. Am J Cardiol 1972;30:197-204.

    Google Scholar 

  10. Eisenhofer G, Rundqvist B, Åneman A, Friberg P, Dakak N, Kopin IJ, Jacobs MC, Lenders JW. Regional release and removal of catecholamines and extraneuronal metabolism to metanephrines. J Clin Endocrinol Metab 1995;80:3009-3017.

    Google Scholar 

  11. Eisenhofer G, Åneman A, Hooper D, Holmes C, Goldstein DS, Friberg P. Production and metabolism of dopamine and norepinephrine in mesenteric organs and liver of swine. Am J Physiol 1995;268:G641-G649.

    Google Scholar 

  12. Eisenhofer G, Åneman A, Friberg P, Hooper D, \(\tilde F\)andriks L, Lonroth H, Hunyady B, Mezey E. Substantial production of dopamine in the human gastrointestinal tract. J Clin Endocrinol Metab 1998;42:374-377.

    Google Scholar 

  13. Crout JR, Sjoerdsma A. Turnover and metabolism of catecholamines in patients with pheochromocytoma. J Clin Invest 1964;43:94-102.

    Google Scholar 

  14. Feldman JM. Phenylethanolamine-N-methyltransferase activity determines the epinephrine concentration of pheochromocytomas. Res Commun Chem Pathol Pharmacol 1981;34:389-398.

    Google Scholar 

  15. Osamura RY, Kawai OY, Hori S, Suemizu H, Onoda N, Joh TH. Immunohistochemical localization of catecholamine-synthesizing enzymes in human pheochromocytomas. Endocr Pathol 1990;1:102-108.

    Google Scholar 

  16. Kimura N, Miura Y, Nagatsu I, Nagura H. Catecholamine synthesizing enzymes in 70 cases of functioning and non-functioning phaeochromocytoma and extra-adrenal paraganglioma. Virchows Arch A Pathol Anat Histopathol 1992;421:25-32.

    Google Scholar 

  17. Tumer N, Brown JW, Carballeira A, Fishman LM. Tyrosine hydroxylase gene expression in varying forms of human pheochromocytoma. Life Sci 1996;59:1659-1665.

    Google Scholar 

  18. Eisenhofer G, Walther MM, Huynh T-T, L S-T, Bornstein SR, Vortmeyer A, Mannelli M, Goldstein DS, Linehan WM, Lenders JWM, Pacak K. Pheuchromocytomas in Von Hippel-Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes. J Clin Endocrinal Metab 2001;86:1999-2008.

    Google Scholar 

  19. Proye C, Fossati P, Fontaine P, Lefebvre J, Decoulx M, Wemeau JL, Dewailly D, Rwamasirabo E, Cecat P. Dopamine-secreting pheochromocytoma: An unrecognized entity Classification of pheochromocytomas according to their type of secretion. Surgery 1986;100:1154-1162.

    Google Scholar 

  20. Yasunari K, Kohno M, Yoshikawa J. A dopamine-secreting pheochromocytoma. Am J Med 1999;106:599-600.

    Google Scholar 

  21. Nagatsu T, Mizutani K, Sudo Y, Nagatsu I. Tyrosine hydroxylase in human adrenal glands and human pheochromocytoma. Clin Chim Acta 1972;39:417-424.

    Google Scholar 

  22. Jarrott B, Louis WJ. Abnormalities in enzymes involved in catecholamine synthesis and catabolism in phaeochromocytoma. Clin Sci 1977;53:529-535.

    Google Scholar 

  23. Nakada T, Furuta H, Katayama T. Catecholamine metabolism in pheochromocytoma and normal adrenal medullae. J Urol 1988;140:1348-1351.

    Google Scholar 

  24. Ito Y, Fujimoto Y, Obara T. The role of epinephrine, norepinephrine, and dopamine in blood pressure disturbances in patients with pheochromocytoma. World J Surg 1992;16:759-763.

    Google Scholar 

  25. Page LB, Raker JW, Berberich FR. Pheochromocytoma with predominant epinephrine secretion. Am J Med 1969;47:648-652.

    Google Scholar 

  26. Aronoff SL, Passamani E, Borowsky BA, Weiss AN, Roberts R, Cryer PE. Norepinephrine and epinephrine secretion from a clinically epinephrine-secreting pheochromocytoma. Am J Med 1980;69:321-324.

    Google Scholar 

  27. Wurtman RJ, Axelrod J. Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J Biol Chem 1966;241:2301-2305.

    Google Scholar 

  28. Wong DL, Siddall BJ, Ebert SN, Bell RA, Her S. Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor. Brain Res Mol Brain Res 1998;61:154-161.

    Google Scholar 

  29. Sato T, Kobayashi K, Miura Y, Sakuma H, Yoshinaga K. High epinephrine content in the adrenal tumors from Sipple's syndrome. Tohoku J Exp Med 1975;115:15-19.

    Google Scholar 

  30. Hamilton BP, Landsberg L, Levine RJ. Measurement of urinary epinephrine in screening for pheochromocytoma in multiple endocrine neoplasia type II. Am J Med 1978;65:1027-1032.

    Google Scholar 

  31. Eisenhofer G, Lenders JW, Linehan WM, Walther MM, Goldstein DS, Keiser HR. Plasma normetanephrine and metanephrine for detecting pheochromocytoma in von Hippel-Lindau disease and multiple endocrine neoplasia type 2. N Engl J Med 1999;340:1872-1879.

    Google Scholar 

  32. Schlumberger M, Gicquel C, Lumbroso J, Tenenbaum F, Comoy E, Bosq J, Fonseca E, Ghillani PP, Aubert B, Travagli JP. Malignant pheochromocytoma: Clinical, biological, histologic and therapeutic data in a series of 20 patients with distant metastases. J Endocrinol Invest 1992;15:631-642.

    Google Scholar 

  33. Rao F, Keiser HR, O'Connor DT. Malignant pheochromocytoma: chromaffin granule transmitters and response to treatment. Hypertension 2001;36:1045-1052.

    Google Scholar 

  34. Anton AH, Greer M, Sayre DF, Williams CM. Dihydroxy-phenylalanine secretion in a malignant pheochromocytoma. Am J Med 1967;42:469-475.

    Google Scholar 

  35. Goldstein DS, Stull R, Eisenhofer G, Sisson JC, Weder A, Averbuch SD, Keiser HR. Plasma 3,4-dihydroxyphenylalanine (dopa) and catecholamines in neuroblastoma or pheochromocytoma. Ann Int Med 1986;105:887-888.

    Google Scholar 

  36. McClean DR, Sinclair LM, Yandle TG, Nicholls MG. Malignant phaeochromocytoma with high circulating DOPA, and clonidine-suppressible noradrenaline. Blood Press 1995;4:215-217.

    Google Scholar 

  37. John H, Ziegler WH, Hauri D, Jaeger P. Pheochromocytomas: Can malignant potential be predicted? Urology 1999;53:679-683.

    Google Scholar 

  38. Weyler W, Hsu YP, Breakefield XO. Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 1990;47:391-417.

    Google Scholar 

  39. Lenders JWM, Eisenhofer G, Abeling NGGM, Berger W, Murphy DL, Konings CH, Wagemakers LMB, Kopin IJ, Karoum F, van Gennip AH, Brunner HG. Specific genetic deficiencies of the A and B isozymes of monoamine oxidase are characterized by distinct neurochemical and clinical phenotypes. J Clin Invest 1996;97:1010-1019.

    Google Scholar 

  40. Kawamura M, Kopin IJ, Kador PF, Sato S, Tjurmina O, Eisenhofer G. Effects of aldehyde/aldose reductase inhibition on neuronal metabolism of norepinephrine. J Auton Nerv Syst 1997;66:145-148.

    Google Scholar 

  41. Kawamura M, Eisenhofer G, Kopin IJ, Kador PF, Lee YS, Tsai JY, Fujisawa S, Lizak MJ, Sinz A, Sato S. Aldose reductase, a key enzyme in the oxidative deamination of norepinephrine in rats. Biochem Pharmacol 1999;58:517-524.

    Google Scholar 

  42. Duncan RJ, Sourkes TL. Some enzymic aspects of the production of oxidized or reduced metabolites of catecholamines and 5-hydroxytryptamine by brain tissues. J Neurochem 1974;22:663-669.

    Google Scholar 

  43. Lotta T, Vidgren J, Tilgmann C, Ulmanen I, Melen K, Julkunen I, Taskinen J. Kinetics of human soluble and membrane-bound catechol O-methyltransferase: A revised mechanism and description of the thermolabile variant of the enzyme. Biochemistry 1995;34:4202-4210.

    Google Scholar 

  44. Roth JA. Membrane-bound catechol-O-methyltransferase: A reevaluation of its role in the O-methylation of the catecholamine neurotransmitters. Rev Physiol Biochem Pharmacol 1992;120:1-29.

    Google Scholar 

  45. Eisenhofer G, Pecorella W, Pacak K, Hooper D, Kopin IJ, Goldstein DS. The neuronal and extraneuronal origins of plasma 3-methoxy-4-hydroxyphenylglycol in rats. J Auton Nerv Syst 1994;50:93-107.

    Google Scholar 

  46. Blombery PA, Kopin IJ, Gordon EK, Markey SP, Ebert MH. Conversion of MHPG to vanillylmandelic acid. Implications for the importance of urinary MHPG. Arch Gen Psychiatry 1980;37:1095-1098.

    Google Scholar 

  47. Märdh G, Anggärd E. Norepinephrine metabolism in man using deuterium labelling: origin of 4-hydroxy-3-methoxymandelic acid. J Neurochem 1984;42:43-46.

    Google Scholar 

  48. Eisenhofer G, Åneman A, Hooper D, Rundqvist B, Friberg P. Mesenteric organ production, hepatic metabolism, and renal elimination of norepinephrine and its metabolites in humans. J Neurochem 1996;66:1565-1573.

    Google Scholar 

  49. Dajani R, Cleasby A, Neu M, Wonacott AJ, Jhoti H, Hood AM, Modi S, Hersey A, Taskinen J, Cooke RM, Manchee GR, Coughtrie MW. X-ray crystal structure of human dopamine sulfotransferase, SULT1A3. Molecular modeling and quantitative structure-activity relationship analysis demonstrate a molecular basis for sulfotransferase substrate specificity. J Biol Chem 1999;274:37862-37868.

    Google Scholar 

  50. Lenders JW, Keiser HR, Goldstein DS, Willemsen JJ, Friberg P, Jacobs MC, Kloppenborg PW, Thien T, Eisenhofer G. Plasma metanephrines in the diagnosis of pheochromocytoma. Ann Intern Med 1995;123:101-109.

    Google Scholar 

  51. Raber W, Raffesberg W, Bischof M, Scheuba C, Niederle B, Gasic S, Waldhausl W, Roden M. Diagnostic efficacy of unconjugated plasma metanephrines for the detection of pheochromocytoma. Arch Intern Med 2000;160:2957-2963.

    Google Scholar 

  52. Pisano JJ. A simple analysis of normetanephrine and metanephrine in urine. Clin Chim Acta 1960;5:406-414.

    Google Scholar 

  53. Flood JG, McComb RB. Urinary metanephrines as measured by liquid chromatography with an on-line post-column reaction detector. Clin Chem 1981;27:1268-1271.

    Google Scholar 

  54. Eisenhofer G. Free or total metanephines for diagnosis of pheochromocytoma: What is the difference? Clin Chem 2001;47:988-989.

    Google Scholar 

  55. Graefe KH, Henseling M. Neuronal and extraneuronal uptake and metabolism of catecholamines. Gen Pharmacol 1983;14:27-33.

    Google Scholar 

  56. Trendelenburg, U. The extraneuronal uptake and metabolism of catecholamines. In: Trendelenburg U and Weiner N, eds. Catecholamines I. Springer-Verlag: Berlin, 1988;279-319.

    Google Scholar 

  57. Trendelenburg U. The TiPS lecture: Functional aspects of the neuronal uptake of noradrenaline. Trends Pharmacol Sci 1991;12:334-337.

    Google Scholar 

  58. Schömig E, Fischer P, Schonfeld CL, Trendelenburg U. The extent of neuronal re-uptake of 3H-noradrenaline in isolated vasa deferentia and atria of the rat. Naunyn Schmiedebergs Arch Pharmacol 1989;340:502-508.

    Google Scholar 

  59. Eisenhofer G, Friberg P, Rundqvist B, Quyyumi AA, Lambert G, Kaye DM, Kopin IJ, Goldstein DS, Esler MD. Cardiac sympathetic nerve function in congestive heart failure. Circulation 1996;93:1667-1676.

    Google Scholar 

  60. Eisenhofer G. Plasma normetanephrine for examination of extraneuronal uptake and metabolism of noradrenaline in rats. Naunyn Schmiedebergs Arch Pharmacol 1994;349:259-269.

    Google Scholar 

  61. Eisenhofer G, McCarty R, Pacak K, Russ H, Schomig E. Disprocynium24, a novel inhibitor of the extraneuronal monoamine transporter, has potent effects on the inactivation of circulating noradrenaline and adrenaline in conscious rat. Naunyn Schmiedebergs Arch Pharmacol 1996;354:287-294.

    Google Scholar 

  62. Eisenhofer G, Esler MD, Cox HS, Meredith IT, Jennings GL, Angus JA, Brush JE, Jr, Goldstein DS. Differences in the neuronal removal of circulating epinephrine and norepinephrine. J Clin Endocrinol Metab 1990;70:1710-1720.

    Google Scholar 

  63. Eisenhofer G, Esler MD, Meredith IT, Ferrier C, Lambert G, Jennings G. Neuronal re-uptake of noradrenaline by sympathetic nerves in humans. Clin Sci (Colch) 1991;80:257-263.

    Google Scholar 

  64. Kopin IJ, Gordon EK. Metabolism of adminstered and drugreleased norepinephrine-7-H3 in the rat. J Pharmacol Exp Ther 1963;140:207-216.

    Google Scholar 

  65. Maas JW, Landis DH. The metabolism of circulating norepinephrine by human subjects. J Pharmacol Exp Ther 1971;177:600-612.

    Google Scholar 

  66. Trendelenburg U. Rudolf Buchheim lecture. The metabolizing systems involved in the inactivation of catecholamines. Naunyn Schmiedebergs Arch Pharmacol 1986;332:201-207.

    Google Scholar 

  67. Moleman P, Tulen JH, Blankestijn PJ, Man in 't Veld AJ, Boomsma F. Urinary excretion of catecholamines and their metabolites in relation to circulating catecholamines. Six-hour infusion of epinephrine and norepinephrine in healthy volunteers. Arch Gen Psychiatry 1992;49:568-572.

    Google Scholar 

  68. Brown M. Simultaneous assay of noradrenaline and its deaminated metabolite, dihydroxyphenylglycol, in plasma: A simplified approach to the exclusion of pheochromocytoma in patients with borderline elevation of plasma noradrenaline concentration. Eur J Clin Invest 1984;14:67-72.

    Google Scholar 

  69. Goldstein DS, Eisenhofer G, Stull R, Folio CJ, Keiser HR, Kopin IJ. Plasma dihydroxyphenylglycol and the intraneuronal disposition of norepinephrine in humans. J Clin Invest 1988;81:213-220.

    Google Scholar 

  70. Duncan MW, Compton P, Lazarus L, Smythe GA. Measurement of norepinephrine and 3,4-dihydroxyphenylglycol in urine and plasma for the diagnosis of pheochromocytoma. N Engl J Med 1988;319:136-142.

    Google Scholar 

  71. Nakada T, Sasagawa I, Kubota Y, Suzuki H, Ishigooka M, Watanabe M. Dihydroxyphenylglycol in pheochromocytoma: Its diagnostic use for norepinephrine dominant tumor. J Urol 1996;155:14-18.

    Google Scholar 

  72. Eisenhofer G, Lenders JW, Harvey-White J, Ernst M, Zametkin A, Murphy DL, Kopin IJ. Differential inhibition of neuronal and extraneuronal monoamine oxidase. Neuropsychopharmacology 1996;15:296-301.

    Google Scholar 

  73. Lefebvre H, Noblet C, Moore N, Wolf LM. Pseudo-phaeochromocytoma after multiple drug interactions involving the selective monoamine oxidase inhibitor selegiline. Clin Endocrinol 1995;42:95-8; discuss.

    Google Scholar 

  74. Montastruc JL, Chamontin B, Senard JM, Tran MA, Rascol O, Llau ME, Rascol A. Pseudophaeochromocytoma in Parkinsonian patient treated with fluoxetine plus selegiline. Lancet 1993;341:555.

    Google Scholar 

  75. Kaufmann JS. Pheochromocytoma and tricyclic antidepressants. JAMA 1974;229:1282.

    Google Scholar 

  76. Achong MR, Keane PM. Pheochromocytoma unmasked by desipramine therapy. Ann Intern Med 1981;94:358-359.

    Google Scholar 

  77. Birkebaek NH, Perrild BD. Pheochromocytoma diagnosed in an enuretic boy after imipramine-induced hypertension. Pediatr Hematol Oncol 1986;3:283-285.

    Google Scholar 

  78. Cook RF, Katritsis D. Hypertensive crisis precipitated by a monoamine oxidase inhibitor in a patient with phaeochromocytoma. Br Med J 1990;300:614.

    Google Scholar 

  79. Ferguson KL. Imipramine-provoked paradoxical pheochromocytoma crisis: a case of cardiogenic shock. Am J Emerg Med 1994;12:190-192.

    Google Scholar 

  80. Korzets A, Floro S, Ori Y, Weizer N, Gruzman C. Clomipramineinduced pheochromocytoma crisis: A near fatal complication of a tricyclic antidepressant. J Clin Psychopharmacol 1997;17:428-430.

    Google Scholar 

  81. Kashyap AS. Phaeochromocytoma unearthed by fluoxetine. Postgrad Med J 2001;76:303.

    Google Scholar 

  82. Floor E, Leventhal PS, Wang Y, Meng L, Chen W. Dynamic storage of dopamine in rat brain synaptic vesicles in vitro. J Neurochem 1995;64:689-699.

    Google Scholar 

  83. Eisenhofer G, Rundqvist B, Friberg P. Determinants of cardiac tyrosine hydroxylase activity during exercise-induced sympathetic activation in humans. Am J Physiol 1998;43:R626-R634.

    Google Scholar 

  84. Maas JW, Benensohn H, Landis DH. A kinetic study of the disposition of circulating norepinephrine in normal male subjects. J Pharmacol Exp Ther 1970;174:381-387.

    Google Scholar 

  85. Eisenhofer G, Goldstein DS, Ropchak TG, Nguyen HQ, Keiser HR, Kopin IJ. Source and physiological significance of plasma 3,4-dihydroxyphenylglycol and 3-methoxy-4-hydroxyphenylglycol. J Auton Nerv Syst 1988;24:1-14.

    Google Scholar 

  86. Eisenhofer G, Keiser H, Friberg P, Mezey E, Huynh T-T, Hiremagalur B, Ellingson T, Duddempudi, S, Eijsbouts, A, Lenders, J. Plasma metanephrines are markers of pheochromocytoma produced by catechol-O-methyltransferase within tumors. J Clin Endocrinol Metab 1998;83:2175-2185.

    Google Scholar 

  87. Tyce GM, Chritton SL, Barnes RD, Ward LE, Hunter LW, Rorie DK. The adrenal gland as a source of dihydroxyphenylalanine and catecholamine metabolites. Adv Pharmacol 1998;42:370-373.

    Google Scholar 

  88. Ellingson T, Duddempudi S, Greenberg BD, Hooper D, Eisenhofer G. Determination of differential activities of soluble and membrane-bound catechol-O-methyltransferase in tissues and erythrocytes. J Chromatogr B Biomed Sci Appl 1999;729:347-353.

    Google Scholar 

  89. DeQuattro V, Sullivan P, Foti A, Bornheimer J, Schoentgen S, Versales G, Levine D, Kobayashi K. Central and regional normetadrenaline in evaluation of neurogenic aspects of hypertension: aid to diagnosis of phaeochromocytoma. Clin Sci 1980;59:275s-277s.

    Google Scholar 

  90. Eisenhofer G, Friberg P, Pacak K, Goldstein DS, Murphy DL, Tsigos C, Quyyumi AA, Brunner HG, Lenders JW. Plasma metadrenalines: do they provide useful information about sympatho-adrenal function and catecholamine metabolism Clin Sci (Colch) 1995;88:533-542.

    Google Scholar 

  91. Stenstrom G, Waldenstrom J. Positive correlation between urinary excretion of catecholamine metabolites and tumour mass in pheochromocytoma. Results in patients with sustained and paroxysmal hypertension and multiple endocrine neoplasia. Acta Med Scand 1985;217:73-77.

    Google Scholar 

  92. Märdh G, Luehr CA, Vallee BL. Human class I alcohol dehydrogenases catalyze the oxidation of glycols in the metabolism of norepinephrine. Proc Natl Acad Sci USA 1985;82:4979-4982.

    Google Scholar 

  93. Goldstein DS, Swoboda KJ, Miles JM, Coppack SW, Aneman A, Holmes C, Eisenhofer G, Lenders J. Sources and physiological significance of plasma dopamine sulfate. J Clin Endocrinol Metab 1999;84:2523-2531.

    Google Scholar 

  94. Peaston RT, Lai LC. Biochemical detection of phaechromocytoma: Should we still be measuring urinary HMMA? J Clin Pathol 1993;46:734-737.

    Google Scholar 

  95. Mannelli M, Ianni L, Cilotti A, Conti A. Pheochromocytoma in Italy: A multicentric retrospective study. Eur J Endocrinol 1999;141:619-624.

    Google Scholar 

  96. Coughtrie MW, Sharp S, Maxwell K, Innes NP. Biology and function of the reversible sulfation pathway catalysed by human sulfotransferases and sulfatases. Chem Biol Interact 1998;109:3-27.

    Google Scholar 

  97. Eisenhofer G, Coughtrie MW, Goldstein DS. Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol 1999;26:S41-S53.

    Google Scholar 

  98. Crout JR, Sjoerdsma A. The clinical and laboratory significance of serotonin and catecholamines in bananas. N Engl J Med 1959;261:23-26.

    Google Scholar 

  99. Davidson L, Vandongen R, Beilin LJ. Effects of eating bananas on plasma free and sulfate-conjugated catecholamines. Life Sci 1981;29:1773-1778.

    Google Scholar 

  100. Hoeldtke RD, Wurtman RJ. Cereal ingestion and catecholamine excretion. Metabolism 1974;23:33-41.

    Google Scholar 

  101. Kopin IJ. Catecholamine metabolism: Basic aspects and clinical significance. Pharmacol Rev 1985;37:333-364.

    Google Scholar 

  102. Goldstein DS, Cannon RO, Quyyumi A, Chang P, Duncan M, Brush JE Jr, Eisenhofer G. Regional extraction of circulating norepinephrine, DOPA, and dihydroxyphenylglycol in humans. J Auton Nerv Syst 1991;34:17-35.

    Google Scholar 

  103. Märdh G, Sjoquist B, Ang\(\tilde g\)ard E. Norepinephrine metabolism in man using deuterium labeling: turnover 4-hydroxy-3-methox-ymandelic acid. J Neurochem 1982;38:1582-1587.

    Google Scholar 

  104. Elchisak MA, Polinsky RJ, Ebert MH, Kopin IJ. Kinetics of homovanillic acid and determination of its production rate in humans. J Neurochem 1982;38:380-385.

    Google Scholar 

  105. Lambert GW, Eisenhofer G, Jennings GL, Esler MD. Regional homovanillic acid production in humans. Life Sci 1993;53: 63-75.

    Google Scholar 

  106. Fukuda S, Kobayashi H, Mochizuki T, Tanaka M, Yokoyama Y, Hattori N. Plasma dopamine, urinary dopamine and their metabolites in chronic renal failure. Nippon Jinzo Gakki Shi 1992;34:1011-1017.

    Google Scholar 

  107. Cuche JL, Prinseau J, Selz F, Ruget G, Baglin A. Plasma free, sulfo-and glucuro-conjugated catecholamines in uremic patients. Kidney Int 1986;30:566-572.

    Google Scholar 

  108. Hoeldtke RD, Israel BC, Cavanaugh ST, Krishna GG. Effect of renal failure on plasma dihydroxyphenylglycol, 3-methoxy-4-hydroxyphenylglycol, and vanillymandelic acid. Clin Chim Acta 1989;184:195-196.

    Google Scholar 

  109. Peyrin L, Cottet-Emard JM, Pagliari R, Cottet-Emard RM, Badet C, Mornex R. Plasma methoxyamines assay: a practical advance for the diagnosis of pheochromocytoma. Pathol Biol 1994;42:847-854.

    Google Scholar 

  110. Stumvoll M, Radjaipour M, Seif F. Diagnostic considerations in pheochromocytoma and chronic hemodialysis: case report and review of the literature. Am J Nephrol 1995;15:147-151.

    Google Scholar 

  111. Bowers MB, Jr. Plasma HVA and MHPG in psychiatric patients with renal failure and levodopa-treated Parkinson's disease. J Neuropsychiatry Clin Neurosci 1996;8:450-452.

    Google Scholar 

  112. Brewster DC, Jensen SR, Novelline RA. Reversible renal artery stenosis associated with pheochromocytoma. JAMA 1982;248:1094-1096.

    Google Scholar 

  113. Jensen SR, Novelline RA, Brewster DC, Bonventre JV. Transient renal artery stenosis produced by a pheochromocytoma. Radiology 1982;144:767-768.

    Google Scholar 

  114. Takabatake T, Kawabata M, Ohta H, Yamamoto Y, Ishida Y, Hara H, Hattori N. Acute renal failure and transient, massive proteinuria in a case of pheochromocytoma. Clin Nephrol 1985;24:47-49.

    Google Scholar 

  115. Shemin D, Cohn PS, Zipin SB. Pheochromocytoma presenting as rhabdomyolysis and acute myoglobinuric renal failure. Arch Intern Med 1990;150:2384-2385.

    Google Scholar 

  116. Slavis SA, Geil GE, Martin DC. Extra-adrenal pheochromocytoma causing renal artery stenosis and implications of magnetic resonance imaging as diagnostic tool. Urology 1990;35:276-278.

    Google Scholar 

  117. Hamada N, Akamatsu A, Joh T. A case of pheochromocytoma complicated with acute renal failure and cardiomyopathy. Jpn Circ J 1993;57:84-90.

    Google Scholar 

  118. Box JC, Braithwaite MD, Duncan T, Lucas G. Pheochromocytoma, chronic renal insufficiency, and hemodialysis: a combination leading to a diagnostic and therapeutic dilemma. Am Surg 1997;63:314-316.

    Google Scholar 

  119. Molvalilar S, Kocak N. Excretion of vanillylmandelic acid in renal insufficiency. Lancet 1972;2:1263.

    Google Scholar 

  120. Mornex R, Peyrin L, Pagliari R, Cottet-Emard JM. Measurement of plasma methoxyamines for the diagnosis of pheochromocytoma. Horm Res 1991;36:220-226.

    Google Scholar 

  121. Marini M, Fathi M, Vallotton M. Determination of serum metanephrines in the diagnosis of pheochromocytoma. Ann Endocrinol 1994;54:337-342.

    Google Scholar 

  122. Johansson M, Elam M, Rundqvist B, Eisenhofer G, Herlitz H, Lambert G, Friberg P. Increased sympathetic nerve activity in renovascular hypertension. Circulation 1999;99:2537-2542.

    Google Scholar 

  123. Converse RL, Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, Victor RG. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med 1992;327:1912-1918.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eisenhofer, G., Huynh, TT., Hiroi, M. et al. Understanding Catecholamine Metabolism as a Guide to the Biochemical Diagnosis of Pheochromocytoma. Rev Endocr Metab Disord 2, 297–311 (2001). https://doi.org/10.1023/A:1011572617314

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011572617314

Navigation