Skip to main content
Log in

Effects of Non-Covalent Self-Association on the Subcutaneous Absorption of a Therapeutic Peptide

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To utilize an acylated peptide as a model system to investigate the relationships among solution peptide conformation, non-covalent self-association, subcutaneous absorption and bioavailability under pharmaceutically relevant solution formulation conditions.

Methods. CD spectroscopy, FTIR spectroscopy, equilibrium sedimentation, dynamic light scattering, and size exclusion chromatography were employed to characterize the effects of octanoylation on conformation and self-association of the 31 amino acid peptide derivative des-amino-histidine(7) arginine(26) human glucagon-like peptide (7-37)-OH (IP(7)R(26)GLP-1). Hyperglycemic clamp studies were performed to compare the bioavailability, pharmacokinetics, and pharmacodynamics of solution formulations of oct-IP(7)R(26)GLP-l administered subcutaneously to normal dogs.

Results. Octanoylation of IP(7)R(26)GLP-1 was shown to confer the propensity for a major solvent-induced conformational transition with an accompanying solvent- and temperature-dependent self-association behavior. Formulations were characterized that give rise to remarkably different pharmacodynamics and pharmacokinetics that correlate with distinct peptide conformational and self-association states. These states correspond to: (i) a minimally associated α-helical form (apparent molecular weight = 14 kDa), (ii) a highly associated, predominantly β-sheet form (effective molecular diameter 20 nm), and (iii) an unusually large, micelle-like soluble β-sheet aggregate (effective molecular diameter 50 nm).

Conclusions. Bioavailability and pharmacokinetics of a self-associating peptide can be influenced by aggregate size and the ease of disruption of the non-covalent intermolecular interactions at the subcutaneous site. Hydrophobic aggregation mediated by seemingly innocuous solution formulation conditions can have a dramatic effect on the subcutaneous bioavailability and pharmacokinetics of a therapeutic peptide and in the extreme, can totally preclude its absorption. A size exclusion chromatographic method is identified that distinguishes subcutaneously bioavailable aggregated oct-IP(7)R(26)GLP-1 from non-bioavailable aggregated oct-IP(7)R(26)GLP-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. L. Cleland and R. Langer in Formulation and Delivery of Proteins and Peptides, American Chemical Society, Washington, D.C., 1994, pp 1–19.

    Google Scholar 

  2. M. C. Manning, J. E. Matsuura, B. S. Kendrick, J. D. Meyer, J. J. Dormish, M. Vrkljan, J. R. Ruth, J. F. Carpenter, and E. Shefter. Biotech. Bioeng. 48:506–512 (1995).

    Google Scholar 

  3. B. Chen, T. Arakawa, C. F. Morris, W. C. Kenny, C. M. Wells, and C. G. Pitt. Pharm. Res. 11:1581–1587 (1994).

    Google Scholar 

  4. D. N. Brems. Folding of bovine growth hormone. in Protein Folding: Deciphering the Second Half of the Genetic Code (eds. L. M. Gierash and J. King) 129–135, Washington, D. C., 1990).

  5. J. London, C. Skrzynia, and M. E. Goldberg. Eur. J. Biochem. 47:409–415 (1974).

    Google Scholar 

  6. M. Gutniak, C. Orskov, J. J. Ahren, and B. Efendic. N. Engl. J. Med. (1992).

  7. M. K. Gutniak, B. Linde, J. J. Holst, and S. Efendic. Diabetes Care 17:1039–1044 (1994).

    Google Scholar 

  8. M. Nauck. Diabetic Medicine 13:39–43 (1996).

    Google Scholar 

  9. P. J. Casey. Science 268:221–225 (1995).

    Google Scholar 

  10. D. Clodfelter, J. Reilly, and M. Nussbaum submitted for publication.

  11. S. W. Provencher and J. Glockner. Biochemistry 20:33–37 (1981).

    Google Scholar 

  12. S. W. Provencher. CONTIN Users Manual. EMBL Technical Report DA05, European Molecular Biology Laboratory, Heidelberg, (1982).

  13. H. K. Schachman. Utracentrifugation, Diffusion, and Viscometry, Academic Press, New York (1957).

    Google Scholar 

  14. D. K. McRorie and P. J. Voelker. Self-Associating Systems in the Analytical Ultracentrifuge, Beckman Instruments (1993).

  15. H. Qi and D. L. Heller. J. Pharm. Sci. Tech. 49:289–293 (1995).

    Google Scholar 

  16. Y. Kim and C. A. Rose. Pharm. Res. 12:1284–1288 (1995).

    Google Scholar 

  17. W. W. Yau, J. J. Kirkland, and D. D. Bly in Modern Size Exclusion Chromatography. Wiley, New York (1979).

    Google Scholar 

  18. A. Dong, S. J. Prestrelski, S. D. Allison, and J. F. Carpenter. J. Pharm. Sci. 84:415–424 (1995).

    Google Scholar 

  19. Y. Takakura, M. Hashida, and H. Sezaki. Lymphatic transport after parenteral drug administration. In W. N. Charman and V. J. Stella (eds.) Lymphatic Transport of Drugs CRC Press, Boca Raton (1992) 255–277.

    Google Scholar 

  20. W. Parker and P.-S. Song. Biophys. J. 61:1435–1439 (1992).

    Google Scholar 

  21. J. Johansson, G. Nilsson, R. Stromberg, B. Robertson, H. Jornvall, and T. Curstedt. Biochem. J. 307:535–541 (1995).

    Google Scholar 

  22. M. M. E. Snel, R. Kapstein, and B. Kruijff. Biochemistry 33:3387 (1991).

    Google Scholar 

  23. C. Tanford. The Hydrophobic Effect, John Wiley and Sons, New York (1980) 139–145.

    Google Scholar 

  24. K. Thornton and D. G. Gorenstein. Biochemistry 33:3532–3539 (1994).

    Google Scholar 

  25. W. Yonemoto, M. L. McGlone, and S. S. Taylor. J. Biol. Chem. 268:2348–2352 (1993).

    Google Scholar 

  26. K. W. Traxler and T. G. Dewey. Biochemistry 33:1718–1723 (1994).

    Google Scholar 

  27. M. Joseph and R. Nagaraj. J. Biol. Chem 19439–19445 (1995).

  28. G. James and E. N. Olson. Biochemistry 29:2623–2634 (1990).

    Google Scholar 

  29. J. Zuidema, F. Kadir, H. A. C. Titulaer, and C. Oussoren. Int. J. Pharmaceutics 105:189–207 (1994).

    Google Scholar 

  30. H. R. Constantino, R. Langer, and A. M. Klubanov. J. Pharm. Sci. 83:1662–1669 (1994).

    Google Scholar 

  31. J. Heller. Use of Poly(ortho esters) and polyanhydrides in the development of peptide and protein delivery systems. In J. L. Cleland, and R. Langer (eds.) Formulation and Delivery of Proteins and Peptides, American Chemical Society, Washington DC (1994) 292–305.

    Google Scholar 

  32. Z. Gao, A. J. Shukla, J. R. Johnson, and W. R. Crowley. Pharm. Res. 12:857–863 (1995).

    Google Scholar 

  33. J. Brange, U. Ribel, J. F. Hansen, G. Dodson, M. T. Hansen, S. Havelund, S. G. Melberg, F. Norris, K. Norris, L. Snel, A. R. Sorensen, and H. O. Voigt. Nature 333:679–682 (1988).

    Google Scholar 

  34. J. Brange, D. R. Owens, S. Kang, and A. Volund. Diabetes Care 13:923–954 (1990).

    Google Scholar 

  35. D. L. Bakaysa, J. Radziuk, H. A. Havel, M. L. Brader, S. Li, S. W. Dodd, J. M. Beals, A. H. Pekar, and D. N. Brems. Protein Science 5:2521–2531 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clodfelter, D.K., Pekar, A.H., Rebhun, D.M. et al. Effects of Non-Covalent Self-Association on the Subcutaneous Absorption of a Therapeutic Peptide. Pharm Res 15, 254–262 (1998). https://doi.org/10.1023/A:1011918719017

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011918719017

Navigation