Skip to main content
Log in

Influence of Surface Properties at Biodegradable Microsphere Surfaces: Effects on Plasma Protein Adsorption and Phagocytosis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. The objective of this work was to determine plasma protein adsorption and macrophage phagocytosis of biodegradable polyanhydride, polylactic acid and polylactic-co-glycolic acid microspheres prepared by both spray-drying and solvent evaporation techniques.

Methods. Microspheres were characterized by scanning electron microscopy (SEM), confocal laser microscopy, particle size distribution and zeta (ζ) potential determination. Plasma protein adsorption onto the microspheres was determined using a fluoroaldehyde reagent. Phagocytosis was evaluated by incubating microspheres containing the angiotensin II antagonist, L-158,809, with the macrophages in the presence or absence of the phagocytosis inhibitor cythochalasin D. The extent of phagocytosis was established by fluorescence determination of L-158,809 and by optical microscopy. The effect of amphiphilic poly(ethylene glycol) (PEG) derivatives on phagocytosis was determined using PEG-distearate incorporated into the microspheres.

Results. The average diameter of the microspheres, which depended on the polymer and the initial formulation, ranged from 0.9 to 3.2 micrometers. ζ potential studies showed strong negative values irrespective of the polymer used for the spray-dried formulations. The ζ potential was masked by the incorporation of PEG 400- or PEG 1,400-distearate in the formulation. Confocal laser microscopy showed a homogenous dispersion of PEG (measured as PEG-fluorescein) in the microspheres. Protein adsorption was not observed for any of the microsphere formulations following incubation with bovine serum. Incubation of microspheres with murine macrophages showed that PEG-distearate inhibited phagocytosis at appropriate levels (0,1% w/w). Higher levels >1% w/w of PEG-distearate) resulted in enhanced association with macrophages, despite the presence of the phagocytosis inhibitor cytochalasin D, indicating fusion between the microspheres and the plasma membrane.

Conclusions. These results demonstrate that spray-dried PEG-containing microspheres can be manufactured and that an appropriate concentration of this excipient in microspheres results in decreased phagocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. J. Heller. Bioerodable systems. In R. Langer and D. Wise (eds), Medical Applications of Controlled Release, CRC Press, Boca Raton, FL, 69–102 (1984).

    Google Scholar 

  2. D. H. Lewis. Controlled release of bioactive agents from lactide/glycolide polymers. In M. Chasin, R. Langer, (eds). Biodegradable Polymers as Drug Delivery Systems. New York: Marcel Dekker, 1–41 (1990).

    Google Scholar 

  3. Y. Tabata, S. Gutta, and R. Langer. Pharm. Res. 10(4):487–496 (1993).

    Google Scholar 

  4. Y. Tabata and R. Langer. Pharm. Res. 10(3):391–399 (1993).

    Google Scholar 

  5. C. C. Mylonas, Y. Tabata, R. Langer, and Y. Zohar. J. Control. Rel. 35:23–34 (1995).

    Google Scholar 

  6. E. Mathiowitz, W. M. Saltzman, A. Domb, and R. Langer. J. Appl. Polym. Sci. 35:755–774 (1988).

    Google Scholar 

  7. B. W. Wagenaar and B. W. Müller. Biomaterials 15(1):49–54 (1994).

    Google Scholar 

  8. W. Dang, T. Daviau, and H. Brem. Pharm. Res. 13(5):683–691 (1996).

    Google Scholar 

  9. B. Gander, P. Johanssen, H. Nâm-Tran, and H. P. Merkle. Int. J. Pharm. 129:51–61 (1996).

    Google Scholar 

  10. B. Gander, E. Werhli, R. Alder, and H. P. Merkle. J. Microencapsulation. 12(1):83–97 (1995).

    Google Scholar 

  11. C. Bitz and E. Doelker. Int. J. Pharm. 131:171–181 (1996).

    Google Scholar 

  12. J. W. Fong. French Patent no. FRA 81 11694, (1981).

  13. W. C. Hueper. Arch. Pathol. 67:589–617 (1959).

    Google Scholar 

  14. G. Gregaoriadis. Liposomes as Drug Carriers: Recent Trend and Progress, Wiley, New York, (1993).

    Google Scholar 

  15. S. M. Moghimi and H. M. Patel. FEBS Lett. 233:143–147 (1988).

    Google Scholar 

  16. H. Kwaguchi and N. Koiwai. Biomaterials. 7:61–66 (1986).

    Google Scholar 

  17. T. M. Allen, G. A. Austin, A. Chonn, L. Lin, and K. C. Lee. Biochem. Biophys. Acta. 1061(1):56–64 (1991).

    Google Scholar 

  18. J. Senior, C. Delgado, D. Fisher, C. Tilcock, and G. Gregoriadis. Biochem. Biophys. Acta. 1062(1):77–82 (1991).

    Google Scholar 

  19. S. Zalipsky. Adv. Drug. Deliv. Rev. 16:157–182 (1995).

    Google Scholar 

  20. S. Stolnik, L. Illum, and S. S. Davis. Adv. Drug Deliv. Rev. 16:195–214 (1995).

    Google Scholar 

  21. N. Privitera, R. Naon, P. Vierling, and J. G. Riess. Int. J. Pharm. 120:73–82 (1995).

    Google Scholar 

  22. N. C. Phillips and S. Heydari. Pharm. Sci. 2:73–76 (1996).

    Google Scholar 

  23. J. H. Ratcliffe, I. M. Huneyball, A. Smith, C. Wilson, and S. S. Davis. J. Pharm. Pharmacol. 36:431–436 (1984).

    Google Scholar 

  24. F. X. Lacasse, P. Hildgen, J. Pérodin, N. C. Phillips, E. Escher, and J. N. McMullen. Pharm. Res. 14(7):887–891 (1997).

    Google Scholar 

  25. K. M. Shakesheff, C. Evora, I. Soriano, and R. Langer. J. of Colloid & Interface Sci. 185(2):538–547 (1997).

    Google Scholar 

  26. N. V. Hud, F. P. Milanovich, and R. Balhorn. Biochem. 33(24):7528–7535 (1994).

    Google Scholar 

  27. M. E. Norman, P. Williams, and L. Illum, Biomaterials. 13(12):841–849 (1992).

    Google Scholar 

  28. A. Chonn, S. C. Semple, and P. R. Cullis. Biochim. Biophys. Acta. 1070(1):215–222 (1991).

    Google Scholar 

  29. D. V. Devine, K. Wong, A. Chonn, and P. R. Cullis, Biochim. Biophys. Acta. 1191(1):43–51 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lacasse, F.X., Filion, M.C., Phillips, N.C. et al. Influence of Surface Properties at Biodegradable Microsphere Surfaces: Effects on Plasma Protein Adsorption and Phagocytosis. Pharm Res 15, 312–317 (1998). https://doi.org/10.1023/A:1011935222652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1011935222652

Navigation