Skip to main content
Log in

Tumor Vascular Endothelium: Barrier or Target in Tumor Directed Drug Delivery and Immunotherapy

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The therapy of solid tumors with conventional chemotherapeutics, drug delivery preparations and immuno-modulatory agents directed against the tumor cells is corrupted by a major barrier presented by the tumor vasculature. Permeability of the tumor blood vessels for transport of small molecules and macromolecular drug-carrier conjugates is only sufficient in the blood vessels at the tumor-host interface. Downregulation of the expression of adhesion molecules, required for the facilitation of immune cell recruitment, by the tumor vascular endothelium results in an escape of the tumor from host defence. New therapeutic approaches for the treatment of solid tumors are aimed at the tumor vasculature, either at the endothelial cells themselves or at basement membrane or tumor stroma components. Angiogenesis can be directly blocked with angiogenesis inhibitors, while angiogenesis related factors can serve as tumor vasculature specific epitopes for drug delivery strategies. Some glycoproteins expressed by tumor endothelial cells or present in the basement membrane and tumor stroma are also potential tumor selective targets. Therapeutic modalities that are suitable for site specific delivery are agents that increase tumor accumulation of (targeted) chemo/radiotherapeutics through increasing tumor vascular permeability. The observation that for tumor growth the blood supply is a limiting factor, led to the development of strategies to inhibit angiogenesis or block the tumor blood flow. Manipulation of the expression of endothelial cell adhesion molecules by selectively delivering modulatory agents at or in the tumor vascular endothelial cells may induce (bispecific antibody mediated) host defense activity directed against the tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. Molema and D. K. F. Meijer. Targeting of drugs to various blood cell types using (neo-) glycoproteins, antibodies and other protein carriers. Adv Drug Deliv Rev 14:25–50 (1994).

    Google Scholar 

  2. D. K. F. Meijer and G. Molema. Targeting of drugs to the liver. Seminars in liver disease 15:202–256 (1995).

    PubMed  Google Scholar 

  3. R. Duncan. Drug-polymer conjugates: potential for improved chemotherapy. Anticancer Drugs 3:175–210 (1992).

    PubMed  Google Scholar 

  4. C. W. Mitchell. Histology, cell and tissue biology. Elsevier Science Publishing Co., Inc. Baltimore, Munchen. 1983; pp. 355–400.

    Google Scholar 

  5. L. M. Li, G. L. Nicolson, and I. J. Fidler. Direct in vitro lysis of metastatic tumor cells by cytokine-activated murine vascular endothelial cells. Cancer Res 51:245–254 (1991).

    PubMed  Google Scholar 

  6. J. R. Westphal, H. W. Willems, D. J. Ruiter, and R. M. De Waal. Involvement of LFA-1/ICAM and CD2/LFA-3 in human endothelial cell accessory function. Behring Inst Mitt:51–62 (1993).

  7. H. Lum and A. B. Malik. Regulation of vascular endothelial barrier function. Am J Physiol 267:L223–41 (1994).

    PubMed  Google Scholar 

  8. L. W. Seymour. Passive tumor targeting of soluble macromolecules and drug conjugates. Critical Reviews in Therapeutic Drug Carrier Systems 9:135–187 (1992).

    PubMed  Google Scholar 

  9. N. Simionescu. Cellular aspects of transcapillary exchange. Physiol Rev 63:1536–1579 (1983).

    PubMed  Google Scholar 

  10. R. D. Broadwell. Transcytosis of macromolecules through the blood-brain fluid barriers in vivo. In K. L. Audus, T. J. Raub (eds). Biological barriers to protein delivery. Plenum Press, New York. 1993; pp. 269–96.

    Google Scholar 

  11. K. R. Smith and R. T. Borchardt. Permeability and mechanism of albumin, cationized albumin, and glycosylated albumin transcellular transport across monolayers of cultured bovine brain capillary endothelial cells. Pharm Res 6:466–473 (1989).

    PubMed  Google Scholar 

  12. M. J. Kim, J. Dawes, and W. Jessup. Transendothelial transport of modified low-density lipoproteins. Atherosclerosis 108:5–17 (1994).

    PubMed  Google Scholar 

  13. N. Simionescu and M. Simionescu. Receptor-mediated transcytosis of albumin: identification of albumin binding proteins in the plasma membrane of capillary endothelium. In M. Tsuchiya (ed). Microcirculation-an update. Elsevier Science Publishers B. V. (Biomedical Division), 1987, pp. 67–82.

  14. N. Ghinea, M. Thu Vu Hai, M. Groyer-Picard, and E. Milgrom. How protein hormones reach their target cells. Receptor-mediated transcytosis of hCG through endothelium. Journal Cell Biol 125:87–97 (1994).

    Google Scholar 

  15. E. Omoto, J. J. Minguell, and M. Tavassoli. Endothelial transcytosis of iron-transferrin in the liver does not involve endosomal traffic. Pathobiology 60:284–288 (1992).

    PubMed  Google Scholar 

  16. T. A. Springer. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76:301–314 (1994).

    PubMed  Google Scholar 

  17. S. Ratner. Lymphocyte migration through extracellular matrix. Invasion Metastasis 12:82–100 (1992).

    PubMed  Google Scholar 

  18. N. Oppenheimer-Marks, L. S. Davis, and P. E. Lipsky. Human T lymphocyte adhesion to endothelial cells and transendothelial migration. Alteration of receptor use relates to the activation status of both the T cell and the endothelial cell. J Immunol 145:140–148 (1990).

    PubMed  Google Scholar 

  19. J. Folkman. Tumor angiogenesis: a possible control point in tumor growth. Ann Intern Med 82:96–100 (1975).

    PubMed  Google Scholar 

  20. J. Denekamp. Vasculature as a target for tumour therapy. Prog Appl Microcirc 4:28–38 (1984).

    Google Scholar 

  21. C. T. Baillie, M. C. Winslet, and N. J. Bradley. Tumour vasculature-a potential therapeutic target. Br J Cancer 72:257–267 (1995).

    PubMed  Google Scholar 

  22. T. P. Fan, R. Jaggar, and R. Bicknell. Controlling the vasculature: angiogenesis, anti-angiogenesis and vascular targeting of gene therapy. Trends Pharmacol Sci 16:57–66 (1995).

    PubMed  Google Scholar 

  23. T. M. Sioussat, H. F. Dvorak, T. A. Brock, and D. R. Senger. Inhibition of vascular permeability factor (vascular endothelial growth factor) with antipeptide antibodies. Arch Biochem Biophys 301:15–20 (1993).

    PubMed  Google Scholar 

  24. M. W. Dewhirst, C. Y. Tso, R. Oliver, C. S. Gustafson, T. W. Secomb, and J. F. Gross. Morphologic and hemodynamic comparison of tumor and healing normal tissue microvasculature. Int J Radiat Oncol Biol Phys 17:91–99 (1989).

    PubMed  Google Scholar 

  25. R. K. Jain. Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593 (1987).

    PubMed  Google Scholar 

  26. S. Schultz Hector and S. Haghayegh. Beta-fibroblast growth factor expression in human and murine squamous cell carcinomas and its relationship to regional endothelial cell proliferation. Cancer Res 53:1444–1449 (1993).

    PubMed  Google Scholar 

  27. R. K. Jain. 1995 Whitaker Lecture: delivery of molecules, particles and cells to solid tumors. Annals of Biomedical Engineering 24:457–473 (1996).

    PubMed  Google Scholar 

  28. F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756 (1995).

    PubMed  Google Scholar 

  29. H. F. Dvorak, J. A. Nagy, and A. M. Dvorak. Structure of solid tumors and their vasculature: implications for therapy with monoclonal antibodies. Cancer Cells 3:77–85 (1991).

    PubMed  Google Scholar 

  30. N. Z. Wu. Diminished leukocyte-endothelium interaction in tumor microvessels. Cancer Res 52:4265–4268 (1992).

    PubMed  Google Scholar 

  31. R. J. Melder, G. C. Koenig, B. P. Witwer, N. Safabakhsh, L. L. Munn, and R. K. Jain. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nature Med 2:992–997 (1996).

    PubMed  Google Scholar 

  32. A. W. Griffioen, C. A. Damen, G. H. Blijham, and G. Groenewegen. Tumor angiogenesis is accompanied by a decreased inflammatory response of tumor-associated endothelium. Blood 88:667–673 (1996).

    PubMed  Google Scholar 

  33. H. Nelson, P. S. Ramsey, J. H. Donohue, and L. E. Wold. Cell adhesion molecule expression within the microvasculature of human colorectal malignancies. Clinical Immunol Immunopathol 72:129–136 (1994).

    Google Scholar 

  34. A. L. Epstein, L. A. Khawli, J. L. Hornick, and C. R. Taylor. Identification of a monoclonal antibody, TV-1, directed against the basement membrane of tumor vessels, and its use to enhance the delivery of macromolecules to tumors after conjugation with interleukin 2. Cancer Res 55:2673–2680 (1995).

    PubMed  Google Scholar 

  35. P. J. Swart, L. Beljaars, C. Smit, P. Nieuwenhuis, and D. K. F. Meijer. Lymphatic uptake of negatively charged albumins: implications for anti-HIV efficacy and drug delivery. Submitted.

  36. P.N. Lanken, J. H. Hansen-Flaschen, P. M. Sampson, G. G. Pietra, F. R. Haselton, and A. P. Fishman. Passage of unchanged dextrans from blood to lymph in awake sheep. J Appl Physiol 59:580–591 (1985).

    PubMed  Google Scholar 

  37. R. H. J. Begent, M. J. Verhaar, K. A. Chester, J. L. Casey, A. J. Green, M. P. Napier, L. D. Hope-Stone, N. Cushen, P. A. Keep, C. J. Johnson, et al. Clinical evidence of efficient tumor targeting based on a single-chain Fv antibody selected from a combinatorial library. Nature Med 2:979–984 (1996).

    PubMed  Google Scholar 

  38. J. Folkman. Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175:409–416 (1972).

    PubMed  Google Scholar 

  39. M. S. O'Reilly, L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, Y. Cao, M. Moses, W. S. Lane, E. H. Sage, and J. Folkman. Angiostatin: a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol 59:471–482 (1994).

    PubMed  Google Scholar 

  40. M. S. O'Reilly, L. Holmgren, Y. Shing, C. Chen, R. A. Rosenthal, M. Moses, W. S. Lane, Y. Cao, E. H. Sage, and J. Folkman. Angiostatin: a novel angiogenesis-inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328 (1994).

    PubMed  Google Scholar 

  41. M. S. O'Reilly, H. Brem, and J. Folkman. Treatment of murine hemangioendotheliomas with the angiogenesis inhibitor AGM-1470. J Pediatr Surg 30:325–329 (1995).

    PubMed  Google Scholar 

  42. M. Asano, A. Yukita, T. Matsumoto, S. Kondo, and H. Suzuki. Inhibition of tumor growth and metastasis by an immunoneutralizing monoclonal antibody to human vascular endothelial growth factor/vascular permeability factor121. Cancer Res 55:5296–5301 (1995).

    PubMed  Google Scholar 

  43. J. Lu, B. Li, N. Singh, et al. The inhibition of the growth of various solid human tumors with monoclonal antibodies (mAb) to vascular endothelial growth factor (VEGF). Proc American Association for Cancer Research 35:528 (1994).

    Google Scholar 

  44. P. E. Thorpe and F. J. Burrows. Antibody-directed targeting of the vasculature of solid tumors. Breast Cancer Res Treat 36:237–251 (1995).

    PubMed  Google Scholar 

  45. H. H. Hagemeier, E. Vollmer, S. Goerdt, K. Schulze Osthoff, and C. Sorg. A monoclonal antibody reacting with endothelial cells of budding vessels in tumors and inflammatory tissues, and nonreactive with normal adult tissues. Int J Cancer 38:481–488 (1986).

    PubMed  Google Scholar 

  46. R. O. Schlingemann, F. J. Rietveld, R. M. De Waal, N. J. Bradley, A. I. Skene, A. J. Davies, M. F. Greaves, J. Denekamp, and D.J. Ruiter. Leukocyte antigen CD34 is expressed by a subset of cultured endothelial cells and on endothelial abluminal micro-processes in the tumor stroma. Lab Invest 62:690–696 (1990).

    PubMed  Google Scholar 

  47. W. J. Rettig, P. Garin Chesa, J. H. Healey, S. L. Su, E. A. Jaffe, and L. J. Old. Identification of endosialin, a cell surface glycoprotein of vascular endothelial cells in human cancer. Proc Natl Acad Sci USA 89:10832–10836 (1992).

    PubMed  Google Scholar 

  48. K. Lin, J. A. Nagy, E. M. Masse, et al. Selective accumulation of antibodies to vascular permeability factor in mouse tumors. Proc American Association for Cancer Research 35:510 (1994).

    Google Scholar 

  49. R. M. Reilly, J. Sandhu, T. M. Alvarez Diez, S. Gallinger, J. Kirsh, and H. Stern. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions. Clin Pharmacokinet 28:126–142 (1995).

    PubMed  Google Scholar 

  50. L. F. Brown, B. Berse, R. W. Jackman, K. Tognazzi, E. J. Manseau, H. F. Dvorak, and D. R. Senger. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 143:1255–1262 (1993).

    PubMed  Google Scholar 

  51. H. F. Dvorak, L. F. Brown, M. Detmar, and A. M. Dvorak. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 146:1029–1039 (1995).

    PubMed  Google Scholar 

  52. Qu Hong, J. A. Nagy, D. R. Senger, H. F. Dvorak, and A. M. Dvorak. Ultrastructural localization of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) to the abluminal plasma membrane and vesiculovacuolar-organelles of tumor microvascular endothelium. J Histochem Cytochem 43:381–389 (1995).

    PubMed  Google Scholar 

  53. F. J. Burrows, P. Tazzari, P. Amlot, A. F. Gazdar, E. J. Derbyshire, S. W. King, E. S. Vitetta, and P. E. Thorpe. Endoglin is an endothelial cell proliferation marker that is selectively expressed in tumor vasculature. Clinical Cancer Res 1:1623–1634 (1995).

    Google Scholar 

  54. A. W. Griffioen, C. A. Damen, G. H. Blijham, and G. Groenewegen. Endoglin/CD105 may nor be an optimal tumor endothelial treatment target. Breast Cancer Res Treat 39:239–240 (1996).

    PubMed  Google Scholar 

  55. P. Garin-Chesa, L. J. Old, and W. J. Rettig. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 87:7235–7239 (1990).

    PubMed  Google Scholar 

  56. K. Kairemo, K. Ljunggren, S. E. Strand, J. Hiltunen, P. Penttila, T. Nikula, A. Laine, and T. Wahlstrom. Radioimmunotherapy with 90Y-labeled monoclonal antibodies in a nude mouse ovarian cancer model. Acta Oncol 32:801–805 (1993).

    PubMed  Google Scholar 

  57. D. Fukumura, H. A. Salehi, B. Witwer, R. F. Tuma, R. J. Melder, and R. K. Jain. Tumor necrosis factor-a induced leukocyte adhesion in normal and tumor vessels: effect of tumor type, transplantation site and host strain. Cancer Res 55:4824–4829 (1995).

    PubMed  Google Scholar 

  58. N. Renard, D. Lienard, L. Lespagnard, A. Eggermont, R. Heimann, and F. Lejeune. Early endothelium activation and polymorphonuclear cell invasion precede specific necrosis of human melanoma and sarcoma treated by intravascular high-dose tumour necrosis factor alpha (rTNFa). Int J Cancer 57:656–663 (1994).

    PubMed  Google Scholar 

  59. U. D. Staerz, O. Kanagawa, and M. J. Bevan. Hybrid antibodies can target sites for attack by T cells. Nature 314:628–631 (1985).

    PubMed  Google Scholar 

  60. B. J. Kroesen, W. Helfrich, A. Bakker, A. S. Wubbena, H. Bakker, H. B. Kal, T. H. The, and L. de Leij. Reduction of EGP-2 positive pulmonary metastases by bispecific-antibody-redirected T cells in an immunocompetent rat model. Int J Cancer 61:812–818 (1995).

    PubMed  Google Scholar 

  61. B. J. Kroesen, J. Buter, D. T. Sleijfer, R. A. J. Janssen, W. T. A. van der Graaf, T. H. The, L. de Leij, and N. H. Mulder. Phase I study of intravenously applied bispecific antibody in renal cell cancer patients receiving subcutaneous interleukin 2. Br J Cancer 70:652–661 (1994).

    PubMed  Google Scholar 

  62. F. J. Burrows and P. E. Thorpe. Eradication of large solid tumors in mice with an immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 90:8996–9000 (1993).

    PubMed  Google Scholar 

  63. P. Thorpe, X. Huang, E. Derbyshire, S. King, G. Molema, and T. Edgington. Tumor Infarction: immunoconjugates that coagulate the vasculature of solid tumors. Proc American Association for Cancer Research 36:488 (1995).

    Google Scholar 

  64. X. Huang, G. Molema, S. King, L. Watkins, T. S. Edgington, and P. E. Thorpe. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Accepted for publication in Science.

  65. P. C. Brooks, A. M. Montgomery, M. Rosenfeld, R. A. Reisfeld, T. Hu, G. Klier, and D. A. Cheresh. Integrin alpha v beta 3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79:1157–1164 (1994).

    PubMed  Google Scholar 

  66. R. R. Evans, T. P. Calmels, B. R. Pitt, M. A. Brookens, C. S. Johnson, R. A. Modzelewski, and J. S. Lazo. Gene therapy and endothelial cell targeting for cancer. Ann N Y Acad Sci 716:257–264 (1994).

    PubMed  Google Scholar 

  67. R. W. Jansen, G. Molema, R. Pauwels, D. Schols, E. De Clercq, and D. K. F. Meijer. Potent in vitro anti-HIV-1 activity of modified human serum albumins. Mol Pharmacol 39:818–823 (1991).

    PubMed  Google Scholar 

  68. D. K. F. Meijer, G. Molema, F. Moolenaar, D. De Zeeuw, and P. J. Swart. (Glyco)-protein drug carriers with an intrinsic therapeutic activity: the concept of dual targeting. J Cont Rel 39:163–172 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molema, G., de Leij, L.F.M.H. & Meijer, D.K.F. Tumor Vascular Endothelium: Barrier or Target in Tumor Directed Drug Delivery and Immunotherapy. Pharm Res 14, 2–10 (1997). https://doi.org/10.1023/A:1012038930172

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1012038930172

Navigation