Skip to main content
Log in

Apoptosis in Cardiac Disease—What is it—How Does it Occur

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

This review will present a summary of a description of apoptotic pathways in the heart, followed by ways to measure it and the experimental and clinical evidence for the role of apoptosis in cardiac disease. An evaluation of the effectiveness of pharmacological and other therapeutic interventions in the prevention of apoptosis in the context of cardiac disease will also be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adachi S, Ito H, Tamamori-Adachi M, et al. Cyclin A/cdk2 activation is involved in hypoxiainduced apoptosis in cardiomyocytes. Circ Res 2001; 88: 408-414.

    Google Scholar 

  • Adams JW, Sakata Y, Davis MG, et al. Enhanced Galphaq signaling: A common pathway mediates cardiac hypertrophy and apoptotic heart failure. Proc Natl Acad Sci USA 1998; 95: 10140-10145.

    Google Scholar 

  • Agnoletti L, Curello S, Bachetti T, et al. Serum from patients with severe heart failure downregulates eNOS and is proapoptotic: Role of tumor necrosis factor alpha. Circulation 1999; 100: 1983-1991.

    Google Scholar 

  • Aikawa R, Nawano M, Gu Y, et al. Insulin prevents cardiomyocytes from oxidative stressinduced apoptosis through activation of PI3 kinase/Akt. Circulation 2000; 102: 2873-2879.

    Google Scholar 

  • Akhter SA, Skaer CA, Kypson AP, et al. Restoration of betaadrenergic signaling in failing cardiac ventricular myocytes via adenoviral-mediated gene transfer. Proc Natl Acad Sci USA 1997; 94: 12100-12105.

    Google Scholar 

  • Amato G, Carella C, Fazio S, et al. Body composition, bone metabolism, heart structure and function in growth hormone deficient adults before and after growth hormone replacement therapy at low doses. J Clin Endocrinol Metab 1993; 77: 1671-1676.

    Google Scholar 

  • Andrieu-Abadie N, Jaffrézou J-P, Hatem S, et al. L-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: Role of inhibition of ceramide generation. FASEB J 1999; 13: 1501-1510.

    Google Scholar 

  • Anversa P, Fitzpatrick D, Argani S, et al. Myocytes mitotic division in the aging mammalian rat heart. Circ Res 1991; 69: 1159-1164.

    Google Scholar 

  • Araki M, Hasegawa K, Iwai-Kanai E, et al. Endothelin-1 as a protective factor against beta-adrenergic agonist-induced apoptosis in cardiac myocytes. J Am Coll Cardiol 2000; 36: 1411-1418.

    Google Scholar 

  • Barlucchi L, Leri A, Dostal DE, et al. Canine ventricular myocytes possess a renin-angiotensin system that is upregulated with heart failure. Circ Res 2001; 88: 298-304.

    Google Scholar 

  • Bartling B, Milting H, Schumann H, et al. Myocardial gene expression of regulators of myocyte apoptosis and myocyte calcium homeostasis during hemodynamic unloading by ventricular assist devices in patients with end-stage heart failure. Circulation 1999; 100(Suppl II): 216-223.

    Google Scholar 

  • Berkowitz DE, Price DT, Bello EA, et al. Localization of messenger RNA for three distinct alpha2-adrenergic receptor subtypes in human tissues: Evidence for species heterogeneity and implications for human pharmacology. Anesthesiology 1994; 81: 1235-1244.

    Google Scholar 

  • Bialik S, Geenen DL, Sasson IE, et al. Myocyte apoptosis during acute myocardial infarction in the mouse localizes to hypoxic regions but occurs independently of p53. J Clin Invest 1997; 100: 1363-1372.

    Google Scholar 

  • Bisognano JD, Weinberger HD, Bohlmeyer TJ, et al. Myocardialdirected overexpression of the human beta 1-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2000; 32: 817-830.

    Google Scholar 

  • Boluyt MO, O'Neill L, Meredith AL, et al. Alterations in cardiac gene expression during the transition from stable hypertrophy to heart failure. Marked upregulation of genes encoding extracellular matrix components. Circ Res 1994; 75: 23-32.

    Google Scholar 

  • Bozkurt B, Torre-Amione G, Warren S, et al. Results of targeted anti-tumor necrosis factor therapy with etanercept (ENBREL) in patients with advanced heart failure. Circulation 2001; 103: 1044-1047.

    Google Scholar 

  • Braunwald E, Kloner RA. Myocardial reperfusion: A double edged sword? J Clin Invest 1985; 76: 1713-1719.

    Google Scholar 

  • Bristow MR, Ginsburg R, Fowler M, et al. Beta 1-and beta 2-adrenergic subpopulations in normal and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective beta 1-downregulation in heart failure. Circ Res 1986; 59: 297-309.

    Google Scholar 

  • Bristow MR, Minobe W, Rasmussen R, et al. Beta-adrenergic neuroeffector abnormalities in the failing human heart are produced by local rather than systemic mechanisms. J Clin Invest 1992; 89: 803-815.

    Google Scholar 

  • Brodde OE, Michel MC. Adrenergic and muscarinergic receptors in the human heart. Pharmacol Rev 1999; 51: 651-689.

    Google Scholar 

  • Brodde OE, Schuler S, Kretsch R, et al. Regional distribution of beta-adrenoceptors in the human heart: Coexistence of both functional beta 1-and beta 2-adrenoceptors in both atria and ventricles in severe congestive cardiomyopathy. J Cardiovasc Pharmacol 1986; 8: 1235-1242.

    Google Scholar 

  • Brophy JM, Joseph L, Rouleau JL. Beta-blockers in congestive heart failure. Ann Intern Med 2001; 134: 550-560.

    Google Scholar 

  • Bryant D, Becker L, Richardson J, et al. Cardiac failure in transgenic mice with myocardial expression of tumor necrosis factor alpha. Circulation 1998; 97: 1375-1381.

    Google Scholar 

  • Cheng W, Kajstura J, Nitahara JA, et al. Programmed cell death affects the viable myocardium after infarction in rats. Exp Cell Res 1996; 226: 316-327.

    Google Scholar 

  • Chesley A, Lundberg MS, Asai T, et al. The beta 2-adrenergic receptor delivers an antiapoptotic signal to cardiac myocytes through Gi-dependent coupling to phosphatidylinositol 3′-kinase. Circ Res 2000; 87: 1172-1179.

    Google Scholar 

  • Chiu H-C, Kovacs A, Ford DA, et al. A novel mouse model of lipotoxic cardiomyopathy. J Clin Invest 2001; 107: 813-822.

    Google Scholar 

  • The CIBIS-II Investigators and Committees. The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): A randomised trial. Lancet 1999; 353: 9-13.

    Google Scholar 

  • Cittadini A, Cuocolo A, Merola B, et al. Impaired cardiac performance in GH-deficient adults and its improvement after GH replacement. Am J Physiol 1994; 267: E219-E225.

    Google Scholar 

  • Cohn JH, Levine TB, Olivari MT, et al. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure. New Engl J Med 1984; 311: 819-823.

    Google Scholar 

  • Communal C, Colluci WS, Singh K. p38 mitogen-activated protein kinase pathways protects adult ventricular myocytes against beta-adrenergic receptor-stimulated apoptosis. J Biol Chem 2000; 275: 19395-19400.

    Google Scholar 

  • Communal C, Singh K, Pimentel DR, et al. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway. Circulation 1998; 98: 1329-1334.

    Google Scholar 

  • Communal C, Singh K, Sawyer DB, et al. Opposing effects of beta 1-and beta 2-adrenergic receptors on cardiac myocyte apoptosis. Role of pertussis toxin-sensitive G protein. Circulation 1999; 100: 2210-2212.

    Google Scholar 

  • Condorelli G, Morisco C, Stassi G, et al. Increased cardiomyocyte apoptosis and changes in proapoptotic and antiapoptotic genes bax and bcl-2 during left ventricular adaptations to chronic pressure overload in the rat. Circulation 1999; 99: 3071-3078.

    Google Scholar 

  • Cross HR, Steenbergen C, Lefkowitz RJ, et al. Overexpression of the cardiac beta 2-adrenergic receptor and expression of a beta-adrenergic receptor kinase-1 inhibitor both increase myocardial contractility but have differential effects on susceptibility to ischemic injury. Circ Res 1999; 85: 1077-1084.

    Google Scholar 

  • Dandona P, Karne R, Ghanim H, et al. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation 2000; 101: 122-124.

    Google Scholar 

  • deBoer RA, van Veldhuisen DJ, van der Wijk J, et al. Additional use of immunostaining for active caspase 3 and cleaved actin and PARP fragments to detect apoptosis in patients with chronic heart failure. J Card Fail 2000; 6: 330-337.

    Google Scholar 

  • Deswal A, Petersen NJ, Feldman AM, et al. Cytokines and cytokine receptors in advanced heart failure. An analysis of the cytokine database from the vesnarinone trial (VEST). Circulation 2001; 103: 2055-2059.

    Google Scholar 

  • DeWindt LJ, Lim HW, Taigen T, et al. Calcineurin-mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis-independent model of dilated heart failure. Circ Res 2000; 86: 255-263.

    Google Scholar 

  • Diaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction. The ECLA glucose-insulinpotassium pilot trial. Circulation 1998; 98: 2227-2234.

    Google Scholar 

  • Didenko VV, Hornsby PJ. Presence of double-strand breaks with single-base 3′ overhangs in cells undergoing apoptosis but not necrosis. J Cell Biol 1996; 135: 1369-1376.

    Google Scholar 

  • Didenko VV, Tunstead JR, Hornsby JR. Biotin-labeled hairpin oligonucleotides: Probes to detect double-strand breaks in DNA in apoptotic cells. Am J Pathol 1998; 153: 897-903.

    Google Scholar 

  • Dorn GW, Tepe NM, Lorenz JN, et al. Low-and high-level transgenic expression of beta 2-adrenergic receptors differentially affect cardiac hypertrophy and function in Galphaqoverexpressing mice. Proc Natl Acad Sci USA 1999; 96:-6400-6405.

    Google Scholar 

  • Dumont C, Durrbach A, Bidere N, et al. Caspase-independent commitment phase to apoptosis in activated blood T lymphocytes: Reversibility at low apoptotic insult. Blood 2000; 96: 1030-1038.

    Google Scholar 

  • Dumont EAWJ, Hofstra L, van Heerde WL, et al. Cardiomyocyte death induced by myocardial ischemia and reperfusion. Measurement with recombinant human annexin-V in a mouse model. Circulation 2000; 102: 1564-1568.

    Google Scholar 

  • Earnshaw WC, Martins LM, Kaufmann SH. Mammalian Caspases: Structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 1999; 68: 383-424.

    Google Scholar 

  • Ekhterae D, Lin Z, Lundberg MS, et al. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 1999; 85: e70-e77.

    Google Scholar 

  • Engelhardt S, Hein L, Wiesmann F, et al. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 1999; 96: 7059-7064.

    Google Scholar 

  • Fath-Orboubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction. An overview of randomized placebo-controlled trials. Circulation 1997; 96: 1152-1156.

    Google Scholar 

  • Fedorova OV, Kolodkin NI, Agalakova NI, et al. Marinobufagenin, an endogenous alpha-1 sodium pump ligand, in hypertensive Dahl salt-sensitive rats. Hypertension 2001; 37: 462-466.

    Google Scholar 

  • Fentzke RC, Korcarz CE, Lang RM, et al. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. J Clin Invest 1998; 101: 2415-2426

    Google Scholar 

  • Fillipatos G, Leche G, Sunga G, et al. Expression of FAS adjacent to fibrotic foci in the failing human heart is not associated with increased apoptosis. Am J Physiol 1999; 277: H445-H451.

    Google Scholar 

  • Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res 1996; 79(5): 949-956.

    Google Scholar 

  • Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure.Asubstudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation 1990; 82: 1724-1729.

    Google Scholar 

  • Freeman K, Lerman I, Kranias EG, et al. Alterations in cardiac adrenergic signaling and calcium cycling differentially affect the progression of cardiomyopathy. J Clin Invest 2001; 107: 967-974.

    Google Scholar 

  • Freude B, Masters TN, Robicsek F, et al. Apoptosis is initiated by myocardial ischemia and executed during reperfusion. J Mol Cell Cardiol 2000; 32: 197-208.

    Google Scholar 

  • Frustaci A, Chimenti C, Setoguchi M, et al. Cell death in acromegalic cardiomyopathy. Circulation 1999; 99: 1426-1434.

    Google Scholar 

  • Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res 2000; 87: 1123-1132.

    Google Scholar 

  • Fujio Y, Nguyen T, Wencker D, et al. Akt promotes survival of cardiomyocytes in vitro and protects against ischemiareperfusion injury in mouse heart. Circulation 2000; 101: 660-667.

    Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, et al. Functional beta-3 adrenoceptor in the human heart. J Clin Invest 1996; 98: 556-562.

    Google Scholar 

  • Geng YJ, Ishikawa Y, Vatner DE, et al. Apoptosis of cardiac myocytes in Gsalpha transgenic mice. Circ Res 1999; 84: 34-42.

    Google Scholar 

  • Gonick HC, Ding Y, Vaziri ND, et al. Simulataneous measurement of marinobufagenin, ouabain, and hypertensionassociated protein in various disease states. Clin Exp Hypertens 1998; 20: 617-627.

    Google Scholar 

  • Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest 1994; 94: 1621-1628.

    Google Scholar 

  • Goussev A, Sharov VG, Shimoyama H, et al. Effects of ACE inhibition on cardiomyocyte apoptosis in dogs with heart failure. Am J Physiol 1998; 275: H626-H631.

    Google Scholar 

  • Gross A, McDonnell JM, Korsmeyer SJ. Bcl-2 familymembersand the mitochondria in apoptosis. Genes Develop 1999; 13: 1899-1911.

    Google Scholar 

  • Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res 1999; 85: 856-866

    Google Scholar 

  • Hasking GJ, Esler MD, Jennings GL, et al. Norepinephrine spillover to plasma in patients with chronic congestive heart failure: Evidence of increased overall and cardiorenal sympathetic nerval activity. Circulation 1986; 73: 615-621.

    Google Scholar 

  • Heinke MY, Yao M, Chang D, et al. Apoptosis of ventricular and atrial myocytes from pacing-induced canine heart failure. Cardiovase Res 2001; 49: 127-134.

    Google Scholar 

  • Hirota H, Chen J, Betz UA, et al. Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 1999; 97: 189-198.

    Google Scholar 

  • Hofmann K. The modular nature of apoptotic signaling proteins. Cell Mol Life Sci 1999; 55: 1113-1128.

    Google Scholar 

  • Hofmann K, Bucher P, Tschopp J. TheCARDdomain:Anewapoptotic signaling motif. Trends Biochem Sci 1997; 22: 155-156.

    Google Scholar 

  • Holly TA, Drincic A, Byun Y, et al. Caspase inhibition reduces myocyte cell death induced by myocardial ischemia and reperfusion in vivo. J Mol Cell Cardiol 1999; 31: 1709-1715.

    Google Scholar 

  • Hutter JS, Mestril R, Tam EKW, et al. Overexpression of heat shock protein 72 in transgenic mice decreases infarct size in vivo. Circulation 1996; 94: 1408-1411.

    Google Scholar 

  • Huppertz B, Frank H-G, Kaufmann P. The apoptosis cascade-morphological and immunohistochemical methods for its visualization. Anat Embryol 1999; 200: 1-18.

    Google Scholar 

  • Ino T, Nishimoto K, Okubo M, et al. Apoptosis as a possible cause of wall thinning in end-stage hypertrophic cardiomyopathy. Am J Cardiol 1997; 79: 1137-1141.

    Google Scholar 

  • Isgaard J, Bergh CH, Caidahl K, et al. Aplacebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J 1998; 19: 1704-1711.

    Google Scholar 

  • Iwai-Kanai E, Hasegawa K, Araki M, et al. Alpha-and betaadrenergic pathways differentially regulate cell-type specific apoptosis in rat cardiac myocytes. Circulation 1999; 100: 305-311.

    Google Scholar 

  • Jans DA, Sutton VR, Jans P, et al. Bcl-2 blocks perforin-induced nuclear translocation of granzymes concomitant with protection against the nuclear events of apoptosis. J Biol Chem 1999; 274: 3953-3961.

    Google Scholar 

  • Jeremias I, Kupatt C, Martin-Villalba A, et al. Involvement of CD95/Apo1/Fas in cell death after myocardial ischemia. Circulation 2000; 102: 915-920.

    Google Scholar 

  • Kajstura J, Cheng W, Reiss K, et al. Apoptotic and necrotic myocyte cell deaths are independent contributing variables of infarct size in rats. Lab Invest 1996; 74:86-107.

    Google Scholar 

  • Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997; 29: 859-870.

    Google Scholar 

  • Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in endstage cardiac failure in humans. Proc Natl Acad Sci USA 1998; 95: 8801-8805.

    Google Scholar 

  • Kang PM, Haunstetter A, Aoki H, et al. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 2000; 87: 118-125.

    Google Scholar 

  • Kang YJ, Li G, Saari JT. Metallothionein inhibits ischemiareperfusion injury in mouse heart. Am J Physiol 1999; 276: H993-H997.

    Google Scholar 

  • Kanoh M, Takemura G, Misao J, et al. Significance of myocytes with positiveDNAin situ nick end-labling (TUNEL) in hearts with dilated cardiomyopathy: Not apoptosis but DNA repair. Circulation 1999; 99: 2757-2764.

    Google Scholar 

  • Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26: 239-257.

    Google Scholar 

  • Kido Y, Nakae J, Accili D. The insulin receptor and its cellular targets. J Clin Endocr Metab 2001; 86: 972-979.

    Google Scholar 

  • Kischkel FC, Hellbardt S, Behrmann I, et al. Cytotoxicitydependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 15: 5579-5588.

    Google Scholar 

  • Koglin J, Granville DJ, Glysing-Jensen T, et al. Attenuated acute cardiac rejection in NOS2-/-recipients correlates with reduced apoptosis. Circulation 1999; 99: 836-842.

    Google Scholar 

  • Koscki T, Inohara N, Chen S, et al. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 1998; 95: 5156-5160.

    Google Scholar 

  • Kubota T, McTiernan CF, Frye CS, et al. Dilated cardiomyopathy in transgenic mice with cardiac specific overexpression of tumor necrosis factor alpha. Circ Res 1997; 81: 627-635.

    Google Scholar 

  • Kumashori H, Kusachi S, Moritani H, et al. Establishment of a long-surviving murine model of myocardial infarction: Qualitative and quantitative conventional microscopic findings during pathological evolution. Bas Res Cardiol 1999; 94: 78-84.

    Google Scholar 

  • Kurrelmeyer KM, Michael LH, Baumgarten G, et al. Endogenous tumor necrosis factor protects the adult cardiac myocyte against ischemic-induced apoptosis in a murine model of acute myocardial infarction. Proc Nat Acad Sci USA 2000; 97: 5456-5461.

    Google Scholar 

  • Latif N, Khan MA, Birks E, et al. Upregulation of the Bcl-2 family of proteins in end-stage heart failure. J Am Coll Cardiol 2000; 35: 1769-1777.

    Google Scholar 

  • Lee WL, Chen JW, Ting CT, et al. Insulin-like growth factor I improves cardiovascular function and suppresses apoptosis of cardiomyocytes in dilated cardiomyopathy. Endocrinology 1999; 140: 4831-4840.

    Google Scholar 

  • Leist M, Single B, Castoldi AF, et al. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185: 1481-1486.

    Google Scholar 

  • Leri A, Claudio PP, Li Q, et al. Stretch-mediated release of angiotensin II induces myocyte apoptosis by activating p53 that enhances the local renin-angiotensin system and decreases the Bcl-2 to Bax protein ratio in the cell. J Clin Invest 1998; 101: 1326-1342.

    Google Scholar 

  • Leri A, Fiordaliso F, Setoguchi M, et al. Inhibition of p53 function prevents renin-angiotensin system activation and stretchmediated myocyte apoptosis. Am J Pathol 2000; 157: 843-857.

    Google Scholar 

  • Leri A, Liu Y, Malhotra A, et al. Pacing-induced heart failure in dogs enhances the expression of p53 and p53-dependent genes in ventricular myocytes. Circulation 1999; 97: 194-203.

    Google Scholar 

  • Levin S, Bucci TJ, Cohen SM, et al. The nomenclature of cell death: Recommendations of an ad hoc committee of the Society of Toxicological Pathologists. Toxicol Pathol 1999; 27: 484-490.

    Google Scholar 

  • Li G, Chen Y, Saari JT, et al. Catalase-overexpressing transgenic mouse heart is resistant to ischemia reperfusion injury. Am J Physiol 1997: 273: H1090-H1095.

    Google Scholar 

  • Li H, Zhu H, Xu CJ, et al. Cleavage of Bid by caspase-8 mediates mitochondrial damage in the fas pathway of apoptosis. Cell 1998; 15: 202-206.

    Google Scholar 

  • Li P, Nijhawan D, Budjihardjo I, et al. Cytochrome c and dATPdependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 1997; 91: 479-489.

    Google Scholar 

  • Li Q, Li B, Wang X, et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilatation, wall stress, and cardiac hypertrophy. J Clin Invest 1997; 100: 1991-1999.

    Google Scholar 

  • Li WG, Zaher A, Coppey L, et al. Activation of JNK in the remote myocardium after large myocardial infarction in rats. Biochem Biophys Res Commun 1998; 246: 816-820.

    Google Scholar 

  • Li Z, Bing OH, Long X, et al. Increased cardiomyocyte apoptosis during the transition to heart failure in the spontaneously hypertensive rat. Am J Physiol 1997; 272: H2313-2319.

    Google Scholar 

  • Ligget SB, Tepe NM, Lorenz JN, et al. Early and delayed consequences of beta 2-adrenergic receptor overexpression in mouse heart. Critical role for expression level. Circulation 2000; 101: 1707-1714.

    Google Scholar 

  • Ligget SB, Wagoner LE, Craft LL, et al. The Ile164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 1998; 102: 1534-1539.

    Google Scholar 

  • Lim H, Fallavollita JA, Hard R, et al. Profound apoptosismediated regional myocyte loss and compensatory hypertrophy in pigs with hibernating myocardium. Circulation 1999; 100: 2380-2386.

    Google Scholar 

  • Liu X, Zou H, Slaughter C, et al. DFF, a heterotrimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997; 89: 175-184.

    Google Scholar 

  • Liu Y, Cigola E, Cheng W, et al. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab Invest 1995; 75: 771-787.

    Google Scholar 

  • Long X, Boluyt MO, de Lourdes Hipolito M, et al. p53 and the hypoxia-induced apoptosis of cultured neonatal rat cardiac myocytes. J Clin Invest 1997; 99: 2635-2643.

    Google Scholar 

  • Luo X, Budihardjo I, Zou N, et al. Bid, a Bcl2 interacting protein mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998; 94: 481-490.

    Google Scholar 

  • Lutgens E, Daemen MJAP, de Muinck ED, et al. Chronic myocardial infarction in the mouse: Cardiac structural and functional changes. Cardiovasc Res 1999; 41: 586-593.

    Google Scholar 

  • Lutter M, Fang M, Luo X, et al. Cardiolpin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2001; 2: 754-756.

    Google Scholar 

  • Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146: 3-15.

    Google Scholar 

  • Malhotra R, Brosius FC. Glucose uptake and glycolysis reduce hypoxia-induced apoptosis in cultured neonatal rat cardiac myocytes. J Biol Chem 1999; 274: 12567-12575.

    Google Scholar 

  • Mallet Z, Tedgui A, Fontaliran F, et al. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 1996; 335: 1190-1196.

    Google Scholar 

  • Mann DL, Kent RL, Parsons B, et al. Adrenergic effects on the biology of adult mammalian cardiocyte. Circulation 1992; 85: 790-804.

    Google Scholar 

  • Marber MS, Latchman DS, Walker JM, et al. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88: 1264-1274.

    Google Scholar 

  • Marber MS, Mestril R, Chi S-H, et al. Overexpression of the rat inducible 70-kd heat shock stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 1995; 95: 1446-1456.

    Google Scholar 

  • Martin SJ, Reutelingsperger CP, McGahon AJ, et al. Early redistribution of plasma membrane phosphatidylserine is a general feature of apoptosis regardless of the initiating stimulus: Inhibition by overexpression of Bcl-2 and Abl. J Exp Med 1995; 182: 1545-1556.

    Google Scholar 

  • Matsui T, Li L, del Monte F, et al. Adenoviral gene transfer of activated phosphatidylinositol 3′-kinase and Akt inhibits apoptosis of hypoxic cardiomyocytes in vitro. Circulation 1999; 100: 2373-2379.

    Google Scholar 

  • Maulik N, Engelman RM, Rousou JA, et al. Ischemic preconditioning reduces apoptosis by upregulating anti-death gene Bcl-2. Circulation 1999; 100(19 Suppl): II369-II375.

    Google Scholar 

  • Maulik N, Yoshida T, Das DK. Regulation of cardiomyocyte apoptosis in ischemic reperfused mouse heart by glutathione peroxidase. Mol Cell Biochem 1999; 196: 13-21.

    Google Scholar 

  • Miao W, Luo Z, Kitsis R, et al. Intracoronary, adenovirusmediated Akt gene transfer in heart limits infarct size following ischemia-reperfusion injury in vivo. J Mol Cell Cardiol 2000; 32: 2397-2402.

    Google Scholar 

  • Milano CA, Allen LF, Rockman HA, et al. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor. Science 1994; 264: 582-586.

    Google Scholar 

  • Mocanu MM, Baxter GF, Yellon DM. Caspase inhibition and limitation of myocardial infarct size: Protection against lethal reperfusion injury. Br J Pharmacol 2000; 130: 197-200.

    Google Scholar 

  • Moniotte S, Kobzik L, Feron O, et al. Upregulation of beta 3-adrenoceptors and altered contractile response to inotropic amines in human failing myocardium. Circulation 2001; 103: 1649-1655.

    Google Scholar 

  • Murga C, Laguinge L, Wetzker R, et al. Activation of Akt/protein kinase B by G protein coupled receptors. J Biol Chem 1998; 273: 19080-19085.

    Google Scholar 

  • Mustapha S, Kirshner A, De Moissac D, et al. A direct requirement of nuclear factor-kB for suppression of apoptosis in ventricular myocytes. Am J Physiol 2000; 279: H939-H945.

    Google Scholar 

  • Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996; 335: 1182-1189.

    Google Scholar 

  • Narula J, Pandey P, Arbustini E, et al. Apoptosis in heart failure: Release of cytochrome c from mitochondria and activation of caspase-3 in human cardiomyopathy. Proc Natl Acad Sci USA 1999; 96: 8144-8149.

    Google Scholar 

  • Nelson D, Setser E, Hall DG, et al. Proinflammatory consequences of transgenic Fas ligand expression in the heart. J Clin Invest 2000; 105: 1199-1208.

    Google Scholar 

  • Negoro S, Oh H, Tone E, et al. Glycoprotein 130 regulates cardiac myocyte survival in doxorubicin-induced apoptosis through phosphatidylinositol 3-kinase/Akt phosphorylation and BclxL/ caspase 3 interaction. Circulation 2001; 103: 555-561.

    Google Scholar 

  • Neuss M, Monticone R, Lundberg MS, et al. The apoptotic regulatory protein ARC prevents oxidant stress-mediated cell death by preserving mitochondrial function. J Biol Chem 2001; 276: 33915-33922.

    Google Scholar 

  • Ohno M, Takemura G, Misao J, et al. ‘Apoptotic’ myocytes in infarct area in rabbit hearts may be oncotic myocytes with DNA fragmentation: Analysis by immunogold electron microscopy combined with in situ nick end-labeling. Circulation 1999; 98: 1422-1430.

    Google Scholar 

  • Oie E, Bjornerheim R, Clausen OP, et al. Cyclosporin A inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats. Am J Physiol 2000; 287: H2125-2123.

    Google Scholar 

  • Okamura T, Miura T, Takemura G, et al. Effect of caspase inhibitors on myocardial infarct size and myocyte DNA fragmentation in the ischemia-reperfused rat heart. Cardiovasc Res 2000; 45: 642-650.

    Google Scholar 

  • Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997; 336: 1131-1141.

    Google Scholar 

  • Olivetti G, Quaini F, Sala R, et al. Acute Myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996; 28: 2005-2016.

    Google Scholar 

  • Oie E, Bjornerheim R, Clausen OP, et al. Cyclosporin inhibits cardiac hypertrophy and enhances cardiac dysfunction during postinfarction failure in rats. Am J Physiol 2000; 286: H2115-2123.

    Google Scholar 

  • Osterziel K, Strohm O, Schuler J, et al. Randomized, doubleblind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 1998; 351: 1233-1237.

    Google Scholar 

  • Packer M, Bristow MR, Cohn JN, et al. The effect of carvedilol on morbidity and mortality in patients with severe chronic heart failure. N Engl J Med 1996; 334: 1349-1355.

    Google Scholar 

  • Parsons M, Young L, Lee JE, et al. Distinct cardioprotective effects of adenosine mediated by differential coupling of receptor subtypes to phospholipases C and D. FASEB J 2000; 14: 1423-1431.

    Google Scholar 

  • Peitsch MC, Polzar B, Stephan H, et al. Characterization of the endogenous deoxyribonuclease involved in nuclear DNA degradation during apoptosis (programmed cell death). EMBO J 1993; 12: 371-377.

    Google Scholar 

  • Peräl ä M, Hirvonen H, Kalimo H, et al. Differential expression of two alpha2-adrenergic receptor subtype mRNAs in human tissues. Mol Brain Res 1992; 16: 57-63.

    Google Scholar 

  • Pfeffer MA, Braundwald E, Moye LA, et al. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVEinvestigators. N Engl J Med 1992; 327: 669-677.

    Google Scholar 

  • Pfeffer MA, Lamas GA, Vaughan DE, et al. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 1988; 319: 80-86.

    Google Scholar 

  • Pfeffer MA, Pfeffer JM, Steinberg C, et al. Survival after an experimental myocardial infarction: Beneficial effects of long-term therapy with captopril. Circulation 1985; 72: 406-412.

    Google Scholar 

  • Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. New Engl J Med 1999; 341: 709-717.

    Google Scholar 

  • Post ST, Hammond HK, Insel PA. Beta-adrenergic receptors and receptor signaling in heart failure. Annu Rev Pharmacol Toxicol 1999; 39: 343-360.

    Google Scholar 

  • Ray PS, Martin JL, Swanson EA, et al. Transgene overexpression of alphaB crystallin confers simultaneous protection against cardiomyocyte apoptosis and necrosis during myocardial ischemia and reperfusion. FASEB J 2001; 15: 393-402.

    Google Scholar 

  • Rayment NB, Haven AJ, Madden B, et al. Myocyte loss in chronic heart failure. J Pathol 1999; 188: 213-219.

    Google Scholar 

  • Reed JC. Mechanisms of apoptosis. Am J Pathol 2000; 157: 1415-1430.

    Google Scholar 

  • Rössig L, Haendeler J, Mallat Z, et al. Congestive heart failure induces endothelial cell apoptosis: Protective role of carvedilol. J Am Coll Cardiol 2000; 36: 2081-2089.

    Google Scholar 

  • Sabbah HN, Sharov VG, Gupta RC, et al. Chronic therapy with metoprolol attenuates cardiomyocyte apoptosis in dogs with heart failure. J Am Coll Cardiol 2000; 36: 1698-1705.

    Google Scholar 

  • Saleh A, Srinivasula S, Acharya S, et al. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J Biol Chem 1999; 274: 17941-17945.

    Google Scholar 

  • Sam F, Sawyer DB, Chang DL-F, et al. Progressive left ventricular remodeling and apoptosis late after myocardial infarction in mouse heart. Am J Physiol 2000; 279: H422-H428.

    Google Scholar 

  • Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infraction. Circulation 1997; 95: 320-323.

    Google Scholar 

  • Setoguchi M, Leri A, Wang S, et al. Activation of cyclins and cyclin-dependent kinases, DNA synthesis, and myocyte mitotic division in pacing-induced heart failure in dogs. Lab Invest 1999; 79: 1545-1558.

    Google Scholar 

  • Sharov VG, Sabbah HN, Shimoyama H, et al. Evidence of cardiocyte apoptosis in myocardium of dogs with chronic heart failure. Am J Pathol 1996; 148: 141-149.

    Google Scholar 

  • Shiokawa D, Tanuma S-I. Characterization of human DNase I family endonucleases and activation of DNase gamma during apoptosis. Biochemistry 2001; 40: 143-152.

    Google Scholar 

  • Solomon SC, Glyn RJ, Greaves S, et al. Recovery of ventricular function after myocardial infarction in the reperfusion era: The healing and early after load reducing therapy study. Ann Intern Med 2001; 134: 451-458.

    Google Scholar 

  • The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325: 293-302.

    Google Scholar 

  • Susin S, Lorenzo H, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441-446.

    Google Scholar 

  • Suzuki K, Sawa Y, Kagisaki K, et al. Reduction in myocardial apoptosis associated with overexpression of heat shock protein 70. Bas Res Cardiol 2000; 95: 397-403.

    Google Scholar 

  • Swynghedauw B. Molecular mechanism of myocardial remodeling. Physiol Rev 1999; 79: 215-262.

    Google Scholar 

  • Tanaka M, Ito H, Adachi H, et al. Hypoxia induces apoptosis with enhanced expression of Fas antigen messenger RNA in cultured neonatal rat cardiomyocytes. Circ Res 1994; 75: 426-433.

    Google Scholar 

  • Torre-Amione G, Kapiada S, Benedict CR, et al. Proinflammatory cytokine levels in patients with depressed left ventricular ejection fraction: A report from the studies of left ventricular dysfunction (SOLVD). J Am Coll Cardiol 1996; 28: 964-971.

    Google Scholar 

  • Toyozaki T, Hiroe M, Tanaka M, et al. Levels of soluble Fas ligand in myocarditis. Am J Cardiol 1998; 82: 246-248.

    Google Scholar 

  • Trost SU, Ommens JH, Karlon WJ, et al. Protection against myocardial dysfunction after a brief ischemic period in transgenic mice expressing inducible heat shock protein 70. J Clin Invest 1998; 101: 855-862.

    Google Scholar 

  • Vieira HL, Kroemer G. Pathophysiology of mitochondrial death control. Cell Mol Life Sci 1999; 56: 971-976.

    Google Scholar 

  • Wang P, Chen H, Qin H, et al. Overexpression of human copper, zinc-superoxide dismutase (SOD1) prevents postischemic injury. Proc Natl Acad Sci USA 1998; 95: 4556-4560.

    Google Scholar 

  • Webster KA, Discher DJ, Kaiser S, et al. Hypoxia-activated apoptosis of cardiac myocytes requires reoxygenation or a pH shift and is independent of p53. J Clin Invest 1999; 104: 239-252.

    Google Scholar 

  • Widlak P, Li P, Wang X, et al. Cleavage preferences of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease) on naked DNA and chromatin substrates. J Biol Chem 2000; 275: 8226-8232.

    Google Scholar 

  • Wu W, Lee W-L, Wu YY, et al. Expression of constitutively active phosphatidylinositol 3-kinase inhibits activation of caspase 3 and apoptosis of cardiac muscle cells. J Biol Chem 2000; 275: 40113-40119.

    Google Scholar 

  • Yamamura T, Otani H, Nakao Y, et al. IGF-I differentially regulates Bcl-xL and Bax and confers myocardial protection in the rat heart. Am J Physiol 2001; 280: H1191-H1200.

    Google Scholar 

  • Yamashita N, Hoshida S, Otsu K, et al. Exercise provides direct biphasic cardioprotection via manganese superoxide dismutase activation. J Exp Med 1999; 189: 1699-1706.

    Google Scholar 

  • Yamauchi H, Desgranges P, Lecerf L, et al. New agents for the treatment of infarcted myocardium. FASEB J 2001, in press (published online September 8, 2000).

  • Yaoita H, Ogawa K, Maehara K, et al. Attenuation of ischemia/ reperfusion injury in rats by a caspase inhibitor. Circulation 1998; 97: 276-281.

    Google Scholar 

  • Yoshida T, Maulik N, Engelman RM, et al. Targeted disruption of the mouse Sod 1 gene makes the heart vulnerable to ischemic reperfusion injury. Circ Res 2000; 86: 264-269.

    Google Scholar 

  • Yue TL, Ma XL, Wang X, et al. Possible involvement of stressactivated protein kinase signaling pathway and Fas receptor expression in prevention of ischemia/reperfusion-induced cardiomyocyte apoptosis by carvedilol. Circ Res 1998; 82: 166-174.

    Google Scholar 

  • Zhang D, Gaussin V, Taffet GE, et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 2000; 6: 556-563.

    Google Scholar 

  • Zhang J, Liu X, Scherer DC, et al. Resistance toDNAfragmentation and chromatin condensation in mice lacking theDNAfragmentation factor 45. Proc Natl Acad Sci USA 1998; 95: 12480-12485.

    Google Scholar 

  • Zhu W-Z, Zheng M, Koch WJ, et al. Dual modulation of cell survival and cell death by beta 2-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 2001; 98: 1607-1612.

    Google Scholar 

  • Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome cdependent activation of caspase-3. Cell 1997; 90: 405-413.

    Google Scholar 

  • Zou H, Li Y, Liu X, et al. An Apaf-1 cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J. Biol Chem 1999; 274: 11549-11556.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neuss, M., Crow, M.T., Chesley, A. et al. Apoptosis in Cardiac Disease—What is it—How Does it Occur. Cardiovasc Drugs Ther 15, 507–523 (2001). https://doi.org/10.1023/A:1013715704835

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013715704835

Navigation