Skip to main content
Log in

Pharmacokinetics and Tissue Disposition in Monkeys of an Antisense Oligonucleotide Inhibitor of Ha-Ras Encapsulated in Stealth Liposomes

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. This study examined the pharmacokinetics and tissue distribution of an antisense oligonucleotide ISIS 2503, formulated in stealth (pegylated) liposomes (encapsulated) or in phosphate-buffered saline (unencapsulated).

Methods. Encapsulated or unencapsulated ISIS 2503 was administered to rhesus monkeys by intravenous infusion. The concentrations of ISIS 2503 and metabolites in blood, plasma, and tissue samples were determined by capillary gel electrophoresis.

Results. Plasma concentrations of encapsulated ISIS 2503 decreased mono-exponentially after infusion with a mean half-life of 57.8 hours. In contrast, the concentration of unencapsulated ISIS 2503 in plasma decreased rapidly with a mean half-life of 1.07 hours. Both encapsulated and unencapsulated ISIS 2503 distributed widely into tissues. Encapsulated ISIS 2503 distributed primarily to the reticulo-endothelial system and there were few metabolites observed. In contrast, unencapsulated ISIS 2503 distributed rapidly to tissue with highest concentration seen in kidney and liver. Nuclease-mediated metabolism was extensive for unencapsulated oligonucleotide in plasma and tissues.

Conclusions. The data suggest that stealth liposomes protect ISIS 2503 from nucleases in blood and tissues, slow tissue uptake, and slow the rate of clearance from the systemic circulation. These attributes may make these formulations attractive for delivering oligonucleotides to sites with increased vasculature permeability such as tumors or sites of inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. B. P. Monia, J. F. Johnston, D. J. Ecker, M. Zounes, W. F. Lima, and S. M. Freier. Selective inhibition of mutant Ha-ras mRNA expression by antisense oligonucleotides. J. Biol. Chem. 19954-19962 (1992).

  2. C. F. Bennett, N. Dean, D. J. Ecker, and B. P. Monia. Pharmacology of antisense therapeutic agents. In S. Agrawal (ed.), Methods in Molecular Medicine: Antisense Therapeutics, Humana Press Inc., Totowa, NJ, 1996, pp. 13-46.

    Google Scholar 

  3. L. M. Cowsert. In vitro and in vivo activity of antisense inhibitors of ras: potential for clinical development. Anti-Cancer Drug Des. 12:359-371 (1997).

    Google Scholar 

  4. P. A. Cossum, L. Troung, S. R. Owens, P. M. Markham, J. P. Shea, and S. T. Crooke. Pharmacokinetics of a 14C-labeled phosphorothioate oligonucleotide, ISIS 2105, after intradermal administration to rats. J. Pharmacol. Exp. Ther. 1:89-94 (1994).

    Google Scholar 

  5. P. A. Cossum, H. Sasmor, D. Dellinger, L. Troung, L. Cummins, S. R. Owens, P. M. Markham, J. P. Shea, and S. Crooke. Disposition of the 14C-labeled phosphorothioate oligonucleotide ISIS 2105 after intravenous administration to rats. J. Pharmacol. Exp. Ther. 3:1181-1190 (1993).

    Google Scholar 

  6. R. S. Geary, J. M. Leeds, J. Fitchett, T. Burckin, L. Troung, C. Spainhour, M. Creek, and A. A. Levin. Pharmacokinetics and metabolism in mice of a phosphorothioate oligonucleotide antisense inhibitor of C-raf-1 kinase expression. Drug Metab. Dispos. 25:1272-1281 (1997).

    Google Scholar 

  7. S. Agrawal, J. Temsamani, W. Galbraith and J. Tang. Pharmacokinetics of antisense oligonucleotides. Clin. Pharmacokinet. 28:7-16 (1995).

    Google Scholar 

  8. R. Zhang, J. Yan, H. Shahinian, G. Amin, Z. Lu, T. Liu, M. S. Saag, Z. Jiang, J. Temsamani, R. Martin, P. J. Schechter, S. Agrawal, and R. B. Diasio. Pharmacokinetics of an anti-human immunodeficiency virus antisense oligodeoxynucleotide phosphorothioate (GEM 91) in HIV-infected subjects. Clin. Pharmacol. Ther. 58:45-53 (1995).

    Google Scholar 

  9. E. Bayever, P. L. Iversen, M. R. Bishop, J. G. Sharp, H. K. Tewary, M. A. Arneson, S. J. Pirruccello, R. W. Ruddon, A. Kessinger, G. Zon, and J. O. Armitage. Systemic administration of a phosphorothioate oligonucleotide with a sequence complementary to p53 for Acute Myelogenous Leukemia and Myelodysplastic syndrome: initial results of a phase 1 trial. Antisense Res. Dev. 3:383-390 (1993).

    Google Scholar 

  10. J. M. Glover, J. M. Leeds, T. G. Mant, D. Amin, D. L. Kisner, J. E. Zuckerman, R. S. Geary, A. A. Levin, and W. R. Shanahan. Phase 1 safety and pharmacokinetic profile of an ICAM-1 antisense oligodeoxynucleotide (ISIS 2302). J. Pharmacol. Exp. Ther. 282:1173-1180 (1997).

    Google Scholar 

  11. R. S. Geary, J. M. Leeds, S. P. Henry, D. K. Monteith, and A. A. Levin. Antisense oligonucleotide inhibitors for treatment of cancer: 1. Pharmacokinetic properties of phosphorothioate oligodeoxynucleotides. Anti-Cancer Drug Des. 12:383-393 (1997).

    Google Scholar 

  12. S. Agrawal, J. Temsamani, and J. Y. Tang. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc. Natl. Acad. Sci. U. S. A. 88:7595-7599 (1991).

    Google Scholar 

  13. L. Iversen, J. Mata, W. G. Tracewell, and G. Zon. Pharmacokinetics of an antisense phosphorothioate oligodeoxynucleotide against rev from human immunodeficiency virus type 1 in the adult male rat following single injections and continuous infusion. Antisense Res. Dev. 4:43-52 (1994).

    Google Scholar 

  14. D. C. Litzinger, J. M. Brown, I. Wala, S. A. Kaufman, G. Y. Van, C. L. Farrell, and D. Collins. Fate of cationic liposomes and their complex with oligonucleotide in vivo. Biochim. Biophys. Acta. 1281:139-149 (1996).

    Google Scholar 

  15. D. D. Ma and A. Q. Wei. Enhanced delivery of synthetic oligonucleotides to human leukaemic cells by liposomes and immunoliposomes. Leuk. Res. 20:925-930 (1996).

    Google Scholar 

  16. O. Zelphati, J. L. Imbach, N. Signoret, G. Zon, B. Rayner, and L. Leserman. Antisense oligonucleotides in solution or encapsulated in immunoliposomes inhibit replication of HIV-1 by several different mechanisms. Nucleic Acids Res. 22:4307-4314 (1994).

    Google Scholar 

  17. F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 54:3352-6 (1994).

    Google Scholar 

  18. P. K. Working and A. D. Dayan. CAELYX: Pharmacological-toxicological expert report. Hum. Exp. Toxicol. 15:751-85 (1996).

    Google Scholar 

  19. A. Gabizon and F. Martin. Polyethylene glycol-coated (pegylated) liposomal doxorubicin. Rationale for use in solid tumors. Drugs 54Suppl. 4:15-21 (1997).

    Google Scholar 

  20. M. Grunaug, J. R. Bogner, O. Loch, and F. D. Goebel. Liposomal doxorubicin in pulmonary Kaposi's sarcoma: improved survival as compared to patients without liposomal doxorubicin. Eur. J. Med. Res. 3:13-9 (1998).

    Google Scholar 

  21. M. S. Newman, G. T. Colbern, P. K. Working, C. Engbers, and M. A. Amantea. Comparative pharmacokinetics, tissue distribution, and therapeutic effectiveness of cisplatin encapsulated in long-circulating, pegylated liposomes (SPI-077) in tumor bearing mice. Cancer Chemther. Pharmacol. 43:1-7 (1999).

    Google Scholar 

  22. L. Beaucage and R. P. Iyer. Advances in the synthesis of oligonucleotides by the phosphoramidite approach. Tetrahedron. 48:2223-2311 (1992).

    Google Scholar 

  23. S. P. Henry, P. C. Giclas, J. M. Leeds, M. Pangburn, C. Auletta, A. A. Levin, and D. J. Kornbrust. Activation of the alternative pathway of complement by a phosphorothioate oligonucleotide: potential mechanism of action. J. Pharmacol. Exp. Ther. 281:810-816 (1997).

    Google Scholar 

  24. J. M. Leeds, M. J. Graham, L. Truong and L. L. Cummins. Quantitation of phosphorothioate oligonucleotides in human plasma. Anal. Biochem. 235:36-43 (1996).

    Google Scholar 

  25. R. H. Griffey, M. J. Greig, H. J. Gaus, K. Liu, D. K. Monteith, M. Winniman, and L. L. Cummins. Characterization of oligonucleotide metabolism in vivo via liquid chromatography/electrospray tandem mass spectrometry with a quadrupole ion trap mass spectrometer. J. Mass. Spectrom. 32:305-313 (1997).

    Google Scholar 

  26. J. C. Bigelow, L. R. Chirin, L. A. Mathews, and J. J. McCormack. High-performance liquid chromatographic analysis of phosphorothioate analogues of oligodeoxynucleotides in biological fluids. J. Chromatogr. Biomed. Appl. 133-140 (1990).

  27. S. Agrawal, X. Zhang, Q. Cai, E. R. Kandimalla, A. Manning, Z. Jiang, T. Marcel, and R. Zhang. Effect of asprin on protein binding and tissue disposition of oligonucleotide phosphorothioate in rats. J. Drug Target. 5:303-312 (1998).

    Google Scholar 

  28. B. Davies and T. Morris. Physiological Parameters in laboratory animals and humans. Pharm. Res. 10:1093-1095 (1993).

    Google Scholar 

  29. H. J. Gaus, S. R. Owens, M. Winniman, S. Cooper, and L. L. Cummins. On-line HPLC electrospray mass spectrometry of phosphorothioate oligonucleotide metabolites. Anal. Chem. 69:313-319 (1997).

    Google Scholar 

  30. J. Rappaport, B. Hanss, J. B. Kopp, T. D. Copeland, L. A. Bruggeman, T. M. Coffman, and P. E. Klotman. Transport of phosphorothioate oligonucleotide in kidney: Implications for molecular therapy. Kidney Int. 47:1462-1469 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosie Z. Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, R.Z., Geary, R.S., Leeds, J.M. et al. Pharmacokinetics and Tissue Disposition in Monkeys of an Antisense Oligonucleotide Inhibitor of Ha-Ras Encapsulated in Stealth Liposomes. Pharm Res 16, 1309–1315 (1999). https://doi.org/10.1023/A:1014822219133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014822219133

Navigation