Skip to main content
Log in

A Comparison of Peptidase Activities and Peptide Metabolism in Cultured Mouse Keratinocytes and Neonatal Mouse Epidermis

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

One of the barriers to transdermal delivery of peptides is the metabolic activity of the epidermis. To define this metabolic activity, aminopeptidase activity and Leu-enkephalin metabolism were measured in the epidermis obtained from neonatal mouse skin and in cultured mouse keratinocytes. Aminopeptidase activity was measured fluorometrically using leucine, tyrosine, lysine, and aspartic acid derivatives of β-naphthylamine as substrates. Similarities in substrate kinetic values (K m and V max) and substrate specificity of the enzyme(s) in homogenates prepared from neonatal mouse skin epidermis and cultured mouse keratinocytes strongly suggest that the keratinocytes in culture express the same aminopeptidase(s) with the same relative activity as in neonatal skin. The K m and V max values for aminopeptidase(s) with different substrates in epidermis homogenates are as follows: leucine β-naphthylamide (11 µM and 38 nmol · min−1 · mg−1), tyrosine (β-naphthylamide (21 µM and 18 nmol · min−1 · mg−1), and lysine β-naphthylamide (11 µM and 35 nmol · min−1 · mg−1). Aspartic acid β-naphthylamide and glutamic acid β-naphthylamide were not hydrolyzed by these homogenates at pH 7.4 (37°C). Leu-enkephalin hydrolysis by the homogenates from cultured mouse keratinocytes and neonatal mouse epidermic gave similar K m (32 and 24 µM), V max (9.77 and 7.55 nmol · min−1 · mg−1) and K i (223 and 194 µM) values. In addition, the cellular homogenates gave similar metabolite profiles for Leu-enkephalin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. Blohm, C. Bollschweiler, and H. Hillen. Protein pharmaceuticals. Angew. Chem. Int. Ed. Eng. 27:207–225 (1988).

    Google Scholar 

  2. V. H. L. Lee. Peptide and Protein Drug Delivery: Fundamentals and Technology, Marcel Dekker, New York, 1990.

    Google Scholar 

  3. B. W. Barry. The transdermal route for the delivery of peptides and proteins. In S. S. Davis, L. Illum, and E. Tomlinson (eds.), Delivery Systems for Peptide Drugs, Plenum Press, New York, 1986, pp. 265–275.

    Google Scholar 

  4. W. Sadée. Protein drugs: A revolution in therapy? Pharm. Res. 3:3–6 (1986).

    Google Scholar 

  5. B. L. Ferraiolo and L. Z. Benet. Peptides and proteins as drugs. Pharm. Res. 2:151–155 (1985).

    Google Scholar 

  6. R. L. Bronaugh and H. I. Maibach. Percutaneous Absorption, Marcel Dekker, New York, 1985.

    Google Scholar 

  7. L. Brown and R. Langer. Transdermal delivery of drugs. Annu. Rev. Med. 39:221–229 (1988).

    Google Scholar 

  8. G. Wilson, S. S. Davis, and L. Illum. Pharmaceutical Applications of Cell and Tissue Culture, Plenum Press, New York, 1990.

    Google Scholar 

  9. C. L. Marcelo, Y. G. Kim, J. L. Kaine, and J. J. Voorhees. Stratification, specialization and proliferation of primary keratinocyte cultures. J. Cell Biol. 79:356–370 (1978).

    Google Scholar 

  10. K. C. Madison, D. C. Swartzendruber, P. W. Wertz, and D.T. Downing. Murine keratinocyte cultures grown at the air/medium interface synthesize stratum corneum lipids and “recycle” linoleate during differentiation. J. Invest. Dermatol. 93:10–17 (1989).

    Google Scholar 

  11. M. Pruniéras, M. Régnier, and D. Woodley Methods for cultivation of keratinocytes with an air-liquid interface. J. Invest. Dermatol. 81:28s–33s (1983).

    Google Scholar 

  12. N. E. Fusenig and P. K. Worst. Mouse epidermal cell cultures: II. Isolation, characterization and cultivation of epidermal cells from perinatal mouse skin. Exp. Cell Res. 93:443–457 (1975).

    Google Scholar 

  13. K. A. Holbrook and H. Hennings. Phenotype expression of epidermal cells in vitro: A review. J. Invest. Dermatol. 81:11s–24s (1983).

    Google Scholar 

  14. D. Asselineau, B. A. Bernard, C. Bailly, M. Darmon, and M. Pruniéras. Human epidemis reconstructed by culture: Is it normal? J. Invest. Dermatol. 86:181–186 (1986).

    Google Scholar 

  15. M. B. Cumpstone, A. H. Kennedy, C. S. Harmon, and R. O. Potts. The water permeability of primary mouse keratinocytes culture grown at the air-liquid interface. J. Invest. Dermatol. 92:598–600 (1989).

    Google Scholar 

  16. K. L. Audus, R. L. Bartel, I. J. Hidalgo, and R. T. Borchardt. The use of cultured epithelial and endothelial cells for drug transport and metabolism studies. Pharm. Res. 7:435–451 (1990).

    Google Scholar 

  17. P. K. Shah, R. L. Bartel, and R. T. Borchardt. Permeability characteristics of cultured mouse keratinocytes compared to hairless mouse skin. Int. J. Pharm. 68:285–288 (1991).

    Google Scholar 

  18. J. Hughes, T. W. Smith, H. W. Kosterlitz, L. A. Fothergill, B. A. Morgan, and H. R. Morris. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–589 (1975).

    Google Scholar 

  19. S. D. Kashi and V. H. L. Lee. Enkephalin hydrolysis in homogenates of various absorptive mucosae of the albino rabbit: Similarities in rates and involvement of aminopeptidases. Life Sci. 38:2019–2028 (1986).

    Google Scholar 

  20. L. B. Hersh. Degradation of enkephalins: The search for an enkephalinase. Mol. Cell. Biochem. 47:35–43 (1982).

    Google Scholar 

  21. R. Matsas, A. J. Kenny, and A. J. Turner. The metabolism of neuropeptides: The hydrolysis of peptides, including enkephalins, tachykinin and their analogues, by endopeptidase-24.11. Biochem. J. 223:433–440 (1984).

    Google Scholar 

  22. P. K. Shah and R. T. Borchardt. Liquid chromatographic analysis of Leucine-enkephalin and its metabolites in homogenates of cultured human keratinocytes. J. Pharm. Biomed. Anal. 8:457–462 (1990).

    Google Scholar 

  23. P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson, and D. C. Klenk. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150:76–85 (1985).

    Google Scholar 

  24. A. Baranczyk-Kuzma and K. L. Audus. Characteristics of aminopeptidase activity from bovine brain microvessel endothelium. J. Cer. Blood Flow Metab. 7:801–805 (1987).

    Google Scholar 

  25. R. S. Rapaka and R. L. Hawks. Opioid Peptides: Molecular Pharmacology, Biosynthesis, and Analysis, NIDA Research Monograph 70, Rockville, MD, 1986.

  26. G. M. Gray, A. Tabiowo, and M. D. Trotter. Studies on the soluble and membrane-bound amino acid 2-naphthyl-amidases in pig and human epidermis. Biochem. J. 161:667–675 (1977).

    Google Scholar 

  27. Y. Ito, K. Fukuyama, K. Yabe, and W. L. Epstein. Purification and properties of aminopeptidase from rat epidermis. J. Invest. Dermatol. 83:265–269 (1984).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, P.K., Borchardt, R.T. A Comparison of Peptidase Activities and Peptide Metabolism in Cultured Mouse Keratinocytes and Neonatal Mouse Epidermis. Pharm Res 8, 70–75 (1991). https://doi.org/10.1023/A:1015882323677

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015882323677

Navigation