Skip to main content
Log in

Possible Involvement of Multiple P-Glycoprotein-Mediated Efflux Systems in the Transport of Verapamil and Other Organic Cations Across Rat Intestine

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. We investigated the intestinal transport of verapamil, chlorpromazine, and propantheline, particularly their P-glycoprotein-mediated secretion.

Methods. Permeation of rat intestinal segments in vitro was determined using diffusion cells.

Results. Verapamil permeation in the serosal-to-mucosal direction was much greater than in the mucosal-to-serosal direction using duodenal, jejunal, and colonic membranes. The concentration dependence of jejunal permeation in the absorptive and secretory directions was consistent with saturability of a secretory transport system. Using a monoclonal antibody to inhibit P-glycoprotein-mediated secretion caused a significant enhancement of verapamil absorption through the jejunum. In contrast, the rat ileum did not preferentially transport verapamil in the secretory direction, and the P-glycoprotein antibody had no effect on ileal absorption. Chlorpromazine and propantheline enhanced the mucosal-to-serosal permeation of verapamil through the jejunum, most likely due to competitive inhibition of the P-glycoprotein-mediated secretory process. Vinblastine, tetraethylammonium, and guanidine did not affect verapamil permeation. Propantheline was also a substrate for P-glycoprotein-mediated secretory transport, but in contrast to verapamil, propantheline secretory transport was expressed in rat ileum.

Conclusions. These results suggest that these cationic compounds are transported by plural P-glycoprotein-mediated efflux systems with different substrate specificities depending on the intestinal site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. U. A. Germann, I. Pastan, and M. M. Gottesman. P-glycoproteins: mediators of multidrug resistance. Sem. Cell Biol. 4:63–76 (1993).

    Google Scholar 

  2. R. L. Juliano and V. Ling. A surface glycoprotein modulating drug permeability in chinese hamster ovary cell mutants. Biochim. Biophys. Acta 455:152–162 (1976).

    Google Scholar 

  3. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. U.S.A. 84:7735–7738 (1987).

    Google Scholar 

  4. P. Borst, A. H. Schinkel, J. J. M. Smit, E. Wagenaar, L. Van Deemter, A. J. Smith, E. W. H. M. Eijdems, F. Baas, and G. J. R. Zaman. Classical and novel forms of multidrug resistance and the physiological functions of P-glycoproteins in mammals. Pharmacol. Ther. 60:289–299 (1993).

    Google Scholar 

  5. P. S. Burton, R. A. Conradi, A. R. Hilgers, and N. F. H. Ho. Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem. Biophys. Res. Commun. 190:760–766 (1993).

    Google Scholar 

  6. P. F. Augustijns, T. P. Bradshaw, L.-S. L. Gan, R. W. Hendren, and D. R. Thakker. Evidence for a polarized efflux system in Caco-2 cells capable of modulating cyclosporin A transport. Biochem. Biophys. Res. Commun. 197:360–365 (1993).

    Google Scholar 

  7. J. Hunter, B. H. Hirst, and N. L. Simmons. Drug absorption limited by P-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res. 10:743–749 (1993).

    Google Scholar 

  8. J. Hunter, M. A. Jepson, T. Tsuruo, N. L. Simmons, and B. H. Hirst. Functinal expression of P-glycoprotein in apical membranes of human intestinal Caco-2 cells. J. Biol. Chem. 268:14991–14997 (1993).

    Google Scholar 

  9. J. Karlsson, S.-M. Kuo, J. Ziemniak, and P. Artursson. Transport of celiprolol across human intestinal epithelial (Caco-2) cells: mediation of secretion by multiple transporters including P-glycoprotein. Br. J. Pharmacol. 110:1009–1016 (1993).

    Google Scholar 

  10. I. J. Hidalgo, T. J. Raub, and R. T. Borchardt. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736–749 (1989).

    CAS  PubMed  Google Scholar 

  11. A. R. Hilgers, R. A. Conradi, and P. S. Burton. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa. Pharm. Res. 7:902–910 (1990).

    Google Scholar 

  12. S. Hsing, Z. Gatmaitan, and I. M. Arias. The function of Gp170, the multidrug-resistance gene product, in the brush border of rat intestinal mucosa. Gastroenterology 102:879–855 (1992).

    Google Scholar 

  13. M. Müller, R. Mayer, U. Hero, and D. Keppler. ATP-dependent transport of amphiphilic cations across the hepatocyte canalicular membrane mediated by mdrl P-glycoprotein. FEBS Lett. 343:168–172 (1994).

    Google Scholar 

  14. J. M. Croop, M. Raymond, D. Haber, A. Devault, R. J. Arceci, P. Gros, and D. E. Housman. The three mouse multidrug resistance (mdr) genes are expressed in a tissue-specific manner in normal mouse tissues. Mol. Cell. Biol. 9:1346–1350 (1989).

    Google Scholar 

  15. J. M. Ford and W. N. Hait. Pharmacology of drugs that alter multidrug resistance in cancer. Pharmacol. Rev. 42:155–199 (1990).

    Google Scholar 

  16. J. M. Zamora, H. L. Pearce, and W. T. Beck. Physical-chemical properties shared by compounds that modulate multidrug resistance in human leukemic cells Mol. Pharmacol. 33:454–462 (1988).

    Google Scholar 

  17. K. Yusa and T. Tsuruo. Reversal mechanism of multidrug resistance by verapamil: direct binding of verapamil to P-glycoprotein on specific sites and transport of verapamil outward across the plasma membrane of K562/ADM cells. Cancer Res. 49:5002–5006 (1989).

    Google Scholar 

  18. D. McTavish and E. M. Sorkin. Verapamil: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension. Drug 38:19–76 (1989).

    Google Scholar 

  19. G. M. Grass and S. A. Sweetana. In vitro measurement of gastrointestinal tissue permeability using a new diffusion cell. Pharm. Res. 5:372–376 (1988)

    Google Scholar 

  20. P. A. Porter, I. Osiecka, R. T. Borchardt, J. A. Fix, L. Frost, and C. Gardner. In vitro drug absorption models. II. Salicylate, cefoxitin, α-methyldopa and theophylline uptake in cells and rings: correlation with in vivo bioavailability. Pharm. Res. 2:293–298 (1985).

    Google Scholar 

  21. M. Sugawara, H. Saitoh, K. Iseki, K. Miyazaki, and T. Arita. Contribution of passive transport mechanisms to the intestinal absorption of β-lactam antibiotics. J. Pharm. Pharmacol. 42:314–318 (1990)

    Google Scholar 

  22. T. Tsuruo, H. Iida, M. Nojiri, S. Tsukagoshi, and Y. Sakurai. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 41:1967–1972 (1981).

    CAS  PubMed  Google Scholar 

  23. M. Raderer and W. Scheithauer. Clinical trails of agents that reverse multidrug resistance. Cancer 72:3553–3563 (1993).

    CAS  PubMed  Google Scholar 

  24. M. Marvola, A. Kannikoski, J. Taskinen, and P. Ottoila. Assessment of bioavailability of experimental single-unit sustained release tablets of verapamil hydrochloride using the stable isotope technique. J. Pharm. Pharmacol. 37:766–770 (1985).

    Google Scholar 

  25. S. Harder, P. Thurmann, M. Siewert, H. Blume, T. Huber, and N. Rietbrock. Pharmacodynamic profile of verapamil in relation to absolute bioavailability: investigations with a conventional and a controlled-release formulation. J. Cardiovasc. Pharmacol. 17:207–212 (1991).

    Google Scholar 

  26. H. Saitoh, S. Kawai, K. Iseki, K. Miyazaki, and T. Arita. Binding of organic cations to brush border membrane from rat small intestine. J. Pharm. Pharmacol. 40:776–780 (1988).

    Google Scholar 

  27. K. Iseki, M. Sugawara, H. Saitoh, K. Miyazaki, and T. Arita. Effect of chlorpromazine on the permeability of β-lactam antibiotics across rat intestinal brush border membrane vesicles. J. Pharm. Pharmacol. 40:701–705 (1988).

    Google Scholar 

  28. K. Turnheim and F. Lauterbach. Interaction between intestinal absorption and secretion of monoquaternary ammonium compounds in guinea pigs—a concept for absorption kinetics of organic cations. J. Pharmacol. Exp. Ther. 212:418–424 (1980).

    Google Scholar 

  29. A. Dutt, L. A. Heath, and J. A. Nelson. P-glycoprotein and organic cation secretion by the mammalian kidney. J. Pharmacol. Exp. Ther. 269:1254–1260 (1994).

    Google Scholar 

  30. Y. Miyamoto, V. Ganapathy, and F. H. Leibach. Transport of guanidine in rabbit intestinal brush-border membrane vesicles. Am. J. Physiol. 255:G85–G92 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, H., Aungst, B.J. Possible Involvement of Multiple P-Glycoprotein-Mediated Efflux Systems in the Transport of Verapamil and Other Organic Cations Across Rat Intestine. Pharm Res 12, 1304–1310 (1995). https://doi.org/10.1023/A:1016217505990

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016217505990

Navigation