Skip to main content
Log in

Polystyrene-Poly (Ethylene Glycol) (PS-PEG2000) Particles as Model Systems for Site Specific Drug Delivery. 2. The Effect of PEG Surface Density on the in Vitro Cell Interaction and in VivoBiodistribution

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The effect of differing densities of poly (ethylene glycol-2000) (PEG2000) at the particle surface of polystyrene-poly (ethylene glycol-2000) (PS-PEG2000) particles was assessed in terms of hydrophobic interaction chromatography (HIC) and the in vitro and in vivo behaviour of the particles. The particles, with different surface densities of PEG, were prepared by varying the copolymerizing reaction of styrene with a PEG macromonomer. There is a clear relationship between the surface density of PEG as determined by X-ray photoelectron spectroscopy and surface hydrophobicity as assessed by hydrophobic interaction chromatography (HIC). Similarly, the interaction of the particles with non-parenchymal liver cells in in vitro studies was shown to decrease as the surface density of PEG increases. The in vivo study investigating the biodistribution of the PS-PEG particles after intravenous injection into rats reveals that a relationship exists between the surface density of PEG and the extent to which the particles remain in the circulation, avoiding recognition by the reticuloendothelial system. Particles with the higher surface densities show increased circulatory times which compared well with data for particles prepared with the surface adsorbed PEO-PPO block copolymer, Poloxamine 908.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. S. S. Davis, L. Illum, J. G. McVie and E. Tomlinson. Microspheres and Drug Therapy. Pharmaceutical, Immunological and Medical Aspects. Elsevier, Amsterdam, 1984.

    Google Scholar 

  2. G. Poste. Liposome targeting in vivo: Problems and Opportunities. Biol. Cell. 47:19–38 (1983).

    Google Scholar 

  3. J. Ho Lee, J. Kopececk and J. D. Andrade. Protein resistant surfaces prepared by PEO containing block copolymer surfactant. J. Biomed. Mat. Res. 23:351–368 (1989).

    Google Scholar 

  4. P. Stenius, J. Berg, P. Claesson, C. G. Golander, C. Herder and B. Kronberg. Non-ionic hydrophilic surfaces. Adsorption and interaction. Croat. Chem. Acta. 63:501–516, (1990).

    Google Scholar 

  5. S. Nagaoka and A. Nakao. Clinical applications of antithrombogenic hydrogel with long poly(ethylene oxide) chains. Biomaterials. 11:119–121 (1990).

    Google Scholar 

  6. L. Illum and S. S. Davis. Targeting of colloidal particles to the bone marrow. Life Sci. 40:1553–1560 (1987).

    Google Scholar 

  7. L. Illum, S. S. Davis, R. H. Muller, E. Mak and P. West. The organ distribution and circulation time of intravenously injected colloidal carriers sterically stabilised with a block copolymer-poloxamer 908. Life Sci. 40:367–374 (1987).

    Google Scholar 

  8. C. Porter, S. M. Moghimi, L. Illum and S. S. Davis. The polyoxyethylene/polyoxypropylene block copolymers Poloxamer 407 selectively redirects intravenously injected microspheres to sinusoidal endothelial cells of rabbit bone marrow. FEBS Lett. 305:62–65 (1992).

    Google Scholar 

  9. G. R. Harper, M. C. Davies, S. S. Davis, Th. F. Tadros, D. C. Taylor, M. P. Irving and J. A. Waters. Steric stabilisation of microspheres with grafted polyethylene oxide reduces phagocytosis by rat Kupffer cells in vitro. Biomaterials. 12:695–700 (1991).

    Google Scholar 

  10. A. L. Klibanov, K. Maruyama, V. P. Torchilin and L. Huang. Amphipathic polyethylene glycols effectively prolong the circulation time of liposomes. FEBS Lett. 268:235–237 (1990).

    Google Scholar 

  11. G. Blume and G. Cevc. Liposomes for the sustained drug release in vivo. Biochim. Biophys. Acta. 1029:91–97 (1990).

    Google Scholar 

  12. J. Senior, C. Delgado, D. Fisher, C. Tilcock and G. Gregoriadis. Influence of surface hydrophilicity of liposomes on their interaction with plasma protein and clearance from the circulation: studies with poly(ethylene glycol)-coated vesicles. Biochim. Biophys. Acta. 1062:77–82 (1991).

    Google Scholar 

  13. T. M. Allen, C. Hansen, F. Martin, C. Redemann and A. Yau-Young. Liposomes containing synthetic lipid derivatives of poly(ethylene glycol) show prolonged circulation half lives in vivo. Biochim. Biophys. Acta. 1066:29–36 (1991).

    Google Scholar 

  14. A. Mori, A. L. Klibanov, V. P. Torchilin and L. Huang. Influence of the steric barrier activity of amphipathic poly(ethylene glycol) and ganglioside GM1 on the circulation time of liposomes and on the target binding of immunoliposomes in vivo. FEBS Lett. 284:263–266 (1991).

    Google Scholar 

  15. K. Maruyama, T. Yuda, A. Okamota, C. Ishikura, S. Kojima and M. Iwatsura. Effects of molecular weight in amphipathic poly (ethylene glycol) on prolonging the circulation time of large unilamellar liposomes. Chem. Pharm. Bull. 39:1620–1622 (1991).

    Google Scholar 

  16. A. Brindley, M. C. Davies, R. A. P. Lynn, S. S. Davis, J. Hearn and J. F. Watts. The surface characterization of model charged and sterically stabilized polymer colloids by SSIMS and XPS. Polym.Commun. 33:1112–1115 (1992).

    Google Scholar 

  17. L. Illum, L. O. Jacobsen, R. H. Muller, E. Mak and S. S. Davis. Surface characteristics and the interaction of colloidal particles with mouse peritoneal macrophages. Biomaterials. 8:113–117 (1987).

    Google Scholar 

  18. I. S. Muir, S. M. Moghimi, L. Illum, S. S. Davis and M. C. Davies. The effect of block copolymers on the uptake of model polystyrene microspheres by Kupffer cells-in vitro and in vivo studies. Biochem. Soc. Trans. 19:329S (1991).

    Google Scholar 

  19. R. H. Ottewill and R. Satgurunathan. Non-ionic latices in aqueous media Part 1: Preparation and characterisation of polystyrene latices. Colloid Polym. Sci. 265:845–853 (1987).

    Google Scholar 

  20. A. Brindley, S. S. Davis, M. C. Davies and J. F. Watts. Polystyrene colloids with surface grafted poly (ethylene oxide) as model systems for site specific drug delivery. Part 1: Preparation and surface chemical characterisation using SIMS and XPS. J. Colloid. Interfacial Sci. (in the press)

  21. Y. Huh, W. M. Donaldson and F. J. Johnston. A radiation induced bonding of iodine at the surface of uniform polystyrene particles. Radiat. Res. 60:42–53 (1974).

    Google Scholar 

  22. S. M. Moghimi and H. M. Patel. Serum opsonins and phagocytosis of saturated and unsaturated phospholipid liposomes. Biochim. Biophys. Acta. 984:384–387 (1989).

    Google Scholar 

  23. F. Ulrich and D. B. Zilversmit. Release from alveolar macrophages of an inhibitor of phagocytosis. Am. J. Physiol. 218:1118–1127 (1970).

    Google Scholar 

  24. W. A. Ritschel. In vivo animal models for bioavailability assessment. S.T.P.Pharma. 3:125–141 (1987).

    Google Scholar 

  25. N. W. Peltier, J. Uhl, V. Steel, L. Brophy and E. M. Liversidge. Direct suppression of phagocytosis by amphiphilic polymeric surfactants. Pharm. Res. 9:1177–1183 (1992).

    Google Scholar 

  26. S. M. Moghimi, H. Hedeman, I. S. Muir, L. Illum and S. S. Davis. An investigation of the filtration capacity and the fate of large filtered sterically stabilised microspheres in rat spleen. Biochim. Biophys. Acta. 1157:233–240 (1993).

    Google Scholar 

  27. S. M. Moghimi, I. S. Muir, L. Illum, S. S. Davis and V. Kolb-Bachofen. Coating particles with a block co-polymer (poloxamine 908) suppresses opsonisation but permits the activity of dysopsonins in the serum. Biochim. Biophys. Acta. 1179:157–165 (1993).

    Google Scholar 

  28. J. S. Tan, D. E. Butterfield, C. L. Voycheck, K. D. Caldwell and J. T. Li. Surface modification of nanoparticles by PEO/PPO block copolymers to minimise interactions with blood components and prolong blood circulation in rats. Biomaterials. 14:823–833 (1993).

    Google Scholar 

  29. M. E. Norman, P. Williams and L. Illum. The adsorption of plasma and serum proteins to block copolymer coated microspheres. Biomaterials. 14:193–202 (1993).

    Google Scholar 

  30. G. Blume and G. Cevc. Molecular mechanism of the lipid vesicle longevity in vivo. Biochim. Biophys. Acta. 1146:157–168 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunn, S.E., Brindley, A., Davis, S.S. et al. Polystyrene-Poly (Ethylene Glycol) (PS-PEG2000) Particles as Model Systems for Site Specific Drug Delivery. 2. The Effect of PEG Surface Density on the in Vitro Cell Interaction and in VivoBiodistribution. Pharm Res 11, 1016–1022 (1994). https://doi.org/10.1023/A:1018939521589

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018939521589

Navigation