Skip to main content
Log in

Adenine Nucleotide Translocase Mediates the KATP-Channel-Openers-Induced Proton and Potassium Flux to the Mitochondrial Matrix

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

KATP channel openers have been shown to protect ischemic-reperfused myocardium by mimicking ischemic preconditioning, although their mechanisms of action have not been fully clarified. In this study we investigated the influence of the adenine nucleotide translocase (ANT) inhibitors–carboxyatractyloside (CAT) and bongkrekic acid (BA)–on the diazoxide- and pinacidil-induced uncoupling of isolated rat heart mitochondria respiring on pyruvate and malate (6 + 6 mM). We found that both CAT (1.3 μM) and BA (20 μM) markedly reduced the uncoupling of mitochondrial oxidative phosphorylation induced by the KATP channel openers. Thus, the uncoupling effect of diazoxide and pinacidil is evident only when ANT is not fixed by inhibitors in neither the C- nor the M-conformation. Moreover, the uncoupling effect of diazoxide and pinacidil was diminished in the presence of ADP or ATP, indicating a competition of KATP channel openers with adenine nucleotides. CAT also abolished K+-dependent mitochondrial respiratory changes. Thus ANT could also be involved in the regulation of KATP-channel-openers-induced K+ flux through the inner mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Andreyev, A. Y., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989). Eur. J. Biochem. 182, 585-592.

    Google Scholar 

  • Beavis, A. D., Lu, Y., and Garlid, K. D. (1993). J. Biol. Chem. 268, 997-1004.

    Google Scholar 

  • Belisle, E., and Kowaltowski, A. J. (2002). J. Bioenerg. Biomembr. 34, 285-298.

    Google Scholar 

  • Bernardi, P. (1999). Physiol. Rev. 79, 1127-1155.

    Google Scholar 

  • Das, M., Lim, K., and Halestrap, A. P. (2002). J. Mol. Cell Cardiol. 34, A19.

    Google Scholar 

  • Dos Santos, P., Kowaltowski, A. J., Laclau, M. N., Seetharaman, S., Paucek, P., Boudina, S., Thambo, J. B., Tariosse, L., and Garlid, K. D. (2002). Am. J. Physiol. Heart Circ. Physiol. 283, H284-H295.

    Google Scholar 

  • Dragunova, S. F., Novgorodov, S. A., Sharyshev, A. A., and Yaguzhinskij, L. S. (1981). Biokhimiia 46, 1242-1247.

    Google Scholar 

  • Emaus, R. K., Grunwald, R., and Lemasters, J. J. (1986). Biochim. Biophys. Acta 850, 436-448.

    Google Scholar 

  • Fiore, C., Trezeguet, V., Le Saux, A., Roux, P., Schwimmer, C., Dianoux, A. C., Noel, F., Lauquin, G. J., Brandolin, G., and Vignais, P. V. (1998). Biochimie 80, 137-150.

    Google Scholar 

  • Forbes, R. A., Steenbergen, C., and Murphy, E. (2001). Circ. Res. 88, 802-809.

    Google Scholar 

  • Garlid, K. D. (2000). Basic Res. Cardiol. 95, 275-279.

    Google Scholar 

  • Garlid, K. D., Paucek, P., Yarov-Yarovoy, V., Murray, H. N., Darbenzio, R. B., D'Alonzo, A. J., Lodge, N. J., Smith, M. A., and Grover, G. J. (1997). Circ. Res. 81, 1072-1082.

    Google Scholar 

  • Gornall, A. G., Bardawill, C. J., and David, M. M. (1949). J. Biol. Chem. 177, 751-766.

    Google Scholar 

  • Grimmsmann, T., and Rustenbeck, I. (1998). Br. J. Pharmacol. 123, 781-788.

    Google Scholar 

  • Gross, G. J., and Fryer, R. M. (1999). Circ. Res. 84, 973-979.

    Google Scholar 

  • Grover, G. J. (1994). Cardiovasc. Res. 28, 778-782.

    Google Scholar 

  • Grover, G. J., D'Alonzo, A. J., Garlid, K. D., Bajgar, R., Lodge, N. J., Sleph, P. G., Darbenzio, R. B., Hess, T. A., Smith, M. A., Paucek, P., and Atwal, K. S. (2001). J. Pharmacol. Exp. Ther. 297, 1184-1192.

    Google Scholar 

  • Grover, G. J., and Garlid, K. D. (2000). J. Mol. Cell Cardiol. 32, 677-695.

    Google Scholar 

  • Halestrap, A. P., McStay, G. P., and Clarke, S. J. (2002). Biochimie 84, 153-166.

    Google Scholar 

  • Hanley, P. J., Mickel, M., Loffler, M., Brandt, U., and Daut, J. (2002). J. Physiol. 542, 735-741.

    Google Scholar 

  • Holmuhamedov, E. L., Jovanovic, S., Dzeja, P. P., Jovanovic, A., and Terzic, A. (1998). Am. J. Physiol. 275, H1567-H1576.

    Google Scholar 

  • Holmuhamedov, E. L., Wang, L., and Terzic, A. (1999). J. Physiol. (Lond.) 519(2), 347-360.

    Google Scholar 

  • Holtzman, J. L. (1976). Anal. Chem. 48, 229-230.

    Google Scholar 

  • Hu, H., Sato, T., Seharaseyon, J., Liu, Y., Johns, D. C., O'Rourke, B., and Marban, E. (1999). Mol. Pharmacol. 55, 1000-1005.

    Google Scholar 

  • Inoue, I., Nagase, H., Kishi, K., and Higuti, T. (1991). Nature 352, 244-247.

    Google Scholar 

  • Iwai, T., Tanonaka, K., Koshimizu, M., and Takeo, S. (2000). Br. J. Pharmacol. 129, 1219-1227.

    Google Scholar 

  • Kopustinskiene, D. M., Jovaisiene, J., Liobikas, J., and Toleikis, A. (2002). J. Bioenerg. Biomembr. 34, 49-53.

    Google Scholar 

  • Kowaltowski, A. J., Seetharaman, S., Paucek, P., and Garlid, K. D. (2001). Am. J. Physiol. Heart Circ. Physiol. 280, H649-H657.

    Google Scholar 

  • Laclau, M. N., Boudina, S., Thambo, J. B., Tariosse, L., Gouverneur, G., Bonoron-Adele, S., Saks, V. A., Garlid, K. D., and Dos Santos, P. (2001). J. Mol. Cell Cardiol. 33, 947-956.

    Google Scholar 

  • Light, P. E., Kanji, H. D., Fox, J. E., and French, R. J. (2001). FASEB J. 15, 2586-2594.

    Google Scholar 

  • Liu, Y., Sato, T., O'Rourke, B., and Marban, E. (1998). Circulation 97, 2463-2469.

    Google Scholar 

  • Minners, J., Lacerda, L., McCarthy, J., Meiring, J. J., Yellon, D. M., and Sack, M. N. (2001). Circ. Res. 89, 787-792.

    Google Scholar 

  • Minners, J., van den Bos, E. J., Yellon, D. M., Schwalb, H., Opie, L. H., and Sack, M. N. (2000). Cardiovasc. Res. 47, 68-73.

    Google Scholar 

  • Murata, M., Akao, M., O'Rourke, B., and Marban, E. (2001). Circ. Res. 89, 891-898.

    Google Scholar 

  • Narayan, P., Mentzer, R. M., Jr., and Lasley, R. D. (2001). J. Mol. Cell Cardiol. 33, 121-129.

    Google Scholar 

  • Oldenburg, O., Cohen, M., Yellon, D., and Downey, J. (2002). Cardiovasc. Res. 55, 429.

    Google Scholar 

  • O'Rourke, B. (2000). Circ. Res. 87, 845-855.

    Google Scholar 

  • Ovide-Bordeaux, S., Ventura-Clapier, R., and Veksler, V. (2000). J. Biol. Chem. 275, 37291-37295.

    Google Scholar 

  • Ozcan, C., Bienengraeber, M., Dzeja, P. P., and Terzic, A. (2002). Am. J. Physiol. Heart Circ. Physiol. 282, H531-H539.

    Google Scholar 

  • Ozcan, C., Holmuhamedov, E. L., Jahangir, A., and Terzic, A. (2001). J. Thorac. Cardiovasc. Surg. 121, 298-306.

    Google Scholar 

  • Pain, T., Yang, X. M., Critz, S. D., Yue, Y., Nakano, A., Liu, G. S., Heusch, G., Cohen, M. V., and Downey, J. M. (2000). Circ. Res. 87, 460-466.

    Google Scholar 

  • Panov, A., Filippova, S., and Lyakhovich, V. (1980). Arch. Biochem. Biophys. 199, 420-426.

    Google Scholar 

  • Patel, H. H., and Gross, G. J. (2001). Cardiovasc. Res. 51, 633-636.

    Google Scholar 

  • Sato, T., O'Rourke, B., and Marban, E. (1998). Circ. Res. 83, 110-114.

    Google Scholar 

  • Sato, T., Sasaki, N., Seharaseyon, J., O'Rourke, B., and Marban, E. (2000). Circulation 101, 2418-2423.

    Google Scholar 

  • Schafer, G., Portenhauser, R., and Trolp, R. (1971). Biochem. Pharmacol. 20, 1271-1280.

    Google Scholar 

  • Schafer, G., Wegener, C., Portenhauser, R., and Bojanovski, D. (1969). Biochem. Pharmacol. 18, 2678-2681.

    Google Scholar 

  • Szewczyk, A., and Marban, E. (1999). Trends Pharmacol. Sci. 20, 157-161.

    Google Scholar 

  • Tanonaka, K., Taguchi, T., Koshimizu, M., Ando, T., Morinaka, T., Yogo, T., Konishi, F., and Takeo, S. (1999). J. Pharmacol. Exp. Ther. 291, 710-716.

    Google Scholar 

  • Terzic, A., Dzeja, P. P., and Holmuhamedov, E. L. (2000). J. Mol. Cell Cardiol. 32, 1911-1915.

    Google Scholar 

  • Vanden Hoek, T., Becker, L. B., Shao, Z. H., Li, C. Q., and Schumacker, P. T. (2000). Circ. Res. 86, 541-548.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalia M. Kopustinskiene.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopustinskiene, D.M., Toleikis, A. & Saris, NE.L. Adenine Nucleotide Translocase Mediates the KATP-Channel-Openers-Induced Proton and Potassium Flux to the Mitochondrial Matrix. J Bioenerg Biomembr 35, 141–148 (2003). https://doi.org/10.1023/A:1023746103401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023746103401

Navigation