Skip to main content
Log in

Mishandling of the Therapeutic Peptide Glucagon Generates Cytotoxic Amyloidogenic Fibrils

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Some therapeutic peptides exhibit amyloidogenic properties that cause insolubility and cytotoxicity against neuronal cells in vitro. Here, we characterize the conformational change in monomeric therapeutic peptide to its fibrillar aggregate in order to prevent amyloidogenic formation during clinical application.

Methods. Therapeutic peptides including glucagon, porcine secretin, and salmon calcitonin were dissolved in acidic solution at concen- trations ranging from 1 mg/ml to 80 mg/ml and then aged at 37°C. Amyloidogenic properties were assessed by circular dichroism (CD), electron microscopy (EM), staining with β-sheet-specific dyes, and size-exclusion chromatography (SEC). Cytotoxic characteristics were determined concomitantly.

Results. By aging at 2.5 mg/ml or higher for 24 h, monomeric glucagon was converted to fibrillar aggregates consisting of a β-sheet-rich structure with multimeric states of glucagon. Although no aggregation was observed by aging at the clinical concentration of 1 mg/ml for 1 day, 30-day aging resulted in the generation of fibrillar aggregates. The addition of anti-glucagon serum significantly inhibited fibrillar conversion of monomeric glucagon. Glucagon fibrils induced significant cell death and activated an apoptotic enzyme, caspase-3, in PC12 cells and NIH-3T3 cells. Caspase inhibitors attenuated this toxicity in a dose-dependent manner, indicating the involvement of apoptotic signaling pathways in the fibrillar formation of glucagon. On the contrary to glucagon, salmon calcitonin exhibited aggregation at a much higher concentration of 40 mg/ml and secretin showed no aggregation at the concentration as high as 75 mg/ml.

Conclusions. These results indicated that glucagon was self-associated by its β-sheet-rich intermolecular structure during the aging process under concentrated conditions to induce fibrillar aggregates. Glucagon has the same amyloidogenic propensities as pathologically related peptides such as β-amyloid (Aβ)1-42 and prion protein fragment (PrP)106-126 including conformational change to a β-sheet-rich structure and cytotoxic effects by activating caspases. These findings suggest that inappropriate preparation and application of therapeutic glucagon may cause undesirable insoluble products and side effects such as amyloidosis in clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rodbell, L. Birnbaumer, S. L. Pohl, and F. Sundby. The reaction of glucagon with its receptor: evidence for discrete regions of activity and binding in the glucagon molecule. Proc. Natl. Acad. Sci. U.S.A. 68:909-913 (1971).

    Google Scholar 

  2. G. H. Beaven, W. B. Gratzer, and H. G. Davies. Formation and structure of gels and fibrils from glucagon. Eur. J. Biochem. 11:37-42 (1969).

    Google Scholar 

  3. M. J. Burke and M. A. Rougvie. Cross-β protein structures. I. Insulin fibrils. Biochemistry 11:2435-2439 (1972).

    Google Scholar 

  4. D. K. Clodfelter, A. H. Pekar, D. M. Rebhun, K. A. Destrampe, H. A. Havel, S. R. Myers, and M. L. Brader. Effects of non-covalent self-association on the subcutaneous absorption of a therapeutic peptide. Pharm. Res. 15:254-262 (1998).

    Google Scholar 

  5. M. Cauchy, S. D'Aoust, B. Dawson, H. Rode, and M. Hefford. Thermal stability: a means to assure tertiary structure in therapeutic proteins. Biologicals 30:175-185 (2002).

    Google Scholar 

  6. R. J. Ellis and T. J. Pinheiro. Medicine: danger—misfolding proteins. Nature 416:483-484 (2002).

    Google Scholar 

  7. G. G. Glenner. Amyloid deposits and amyloidosis. The beta-fibrilloses (first of two parts). N. Engl. J. Med. 302:1283-1292 (1980).

    Google Scholar 

  8. G. G. Glenner. Amyloid deposits and amyloidosis: the beta-fibrilloses (second of two parts). N. Engl. J. Med. 302:1333-1343 (1980).

    Google Scholar 

  9. G. Vines. Alzheimer's disease—from cause to cure? Trends Biotechnol. 11:49-55 (1993).

    Google Scholar 

  10. G. J. Cooper, A. C. Willis, A. Clark, R. C. Turner, R. B. Sim, and K. B. Reid. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. U.S.A. 84:8628-8632 (1987).

    Google Scholar 

  11. S. B. Prusiner. Prions. Proc. Natl. Acad. Sci. U.S.A. 95:13363-13383 (1998).

    Google Scholar 

  12. E. Scherzinger, R. Lurz, M. Turmaine, L. Mangiarini, B. Hollenbach, R. Hasenbank, G. P. Bates, S. W. Davies, H. Lehrach, and E. E. Wanker. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549-558 (1997).

    Google Scholar 

  13. J. D. Sipe. Amyloidosis. Annu. Rev. Biochem. 61:947-975 (1992).

    Google Scholar 

  14. W. G. Turnell and J. T. Finch. Binding of the dye congo red to the amyloid protein pig insulin reveals a novel homology amongst amyloid-forming peptide sequences. J. Mol. Biol. 227:1205-1223 (1992).

    Google Scholar 

  15. I. V. Kurochkin. Amyloidogenic determinant as a substrate recognition motif of insulin-degrading enzyme. FEBS Lett. 427:153-156 (1998).

    Google Scholar 

  16. Y. Liu and D. Schubert. Steroid hormones block amyloid fibril-induced 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) formazan exocytosis: relationship to neurotoxicity. J. Neurochem. 71:2322-2329 (1998).

    Google Scholar 

  17. V. Mutt, J. E. Jorpes, and S. Magnusson. Structure of porcine secretin. The amino acid sequence. Eur. J. Biochem. 15:513-519 (1970).

    Google Scholar 

  18. R. K. O'Dor, C. O. Parkes, and D. H. Copp. Amino acid composition of salmon calcitonin. Can. J. Biochem. 47:823-825 (1969).

    Google Scholar 

  19. R. B. Merrifield. Solid-phase peptide synthesis. Adv. Enzymol. Relat. Areas Mol. Biol. 32:221-296 (1969).

    Google Scholar 

  20. S. Onoue, K. Ohshima, K. Endo, T. Yajima, and K. Kashimoto. PACAP protects neuronal PC12 cells from the cytotoxicity of human prion protein fragment 106-126. FEBS Lett. 522:65-70 (2002).

    Google Scholar 

  21. S. Onoue, K. Endo, K. Ohshima, T. Yajima, and K. Kashimoto. The neuropeptide PACAP attenuates beta-amyloid (1-42)-induced toxicity in PC12 cells. Peptides 23:1471-1478 (2002).

    Google Scholar 

  22. W. E. Klunk, J. W. Pettegrew, and D. J. Abraham. Two simple methods for quantifying low-affinity dye-substrate binding. J. Histochem. Cytochem. 37:1293-1297 (1989).

    Google Scholar 

  23. H. LeVine iii. Thioflavine T interaction with synthetic Alzheimer's disease beta-amyloid peptides: detection of amyloid aggregation in solution. Protein Sci. 2:404-410 (1993).

    Google Scholar 

  24. S. Onoue, Y. Waki, Y. Nagano, S. Satoh, and K. Kashimoto. The neuromodulatory effects of VIP/PACAP on PC-12 cells are associated with their N-terminal structures. Peptides 22:867-872 (2001).

    Google Scholar 

  25. I. Isobe, M. Michikawa, and K. Yanagisawa. Enhancement of MTT, a tetrazolium salt, exocytosis by amyloid beta-protein and chloroquine in cultured rat astrocytes. Neurosci. Lett. 266:129-132 (1999).

    Google Scholar 

  26. N. Greenfield and G. D. Fasman. Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8:4108-4116 (1969).

    Google Scholar 

  27. J. Cort, Z. Liu, G. Lee, S. M. Harris, K. S. Prickett, L. S. Gaeta, and N. H. Andersen. Beta-structure in human amylin and two designer beta-peptides: CD and NMR spectroscopic comparisons suggest soluble beta-oligomers and the absence of significant populations of beta-strand dimers. Biochem. Biophys. Res. Commun. 204:1088-1095 (1994).

    Google Scholar 

  28. G. Forloni, N. Angeretti, R. Chiesa, E. Monzani, M. Salmona, O. Bugiani, and F. Tagliavini. Neurotoxicity of a prion protein fragment. Nature 362:543-546 (1993).

    Google Scholar 

  29. B. Solomon, R. Koppel, E. Hanan, and T. Katzav. Monoclonal antibodies inhibit in vitro fibrillar aggregation of the Alzheimer beta-amyloid peptide. Proc. Natl. Acad. Sci. U.S.A. 93:452-455 (1996).

    Google Scholar 

  30. W. E. Klunk, J. W. Pettegrew, and D. J. Abraham. Quantitative evaluation of congo red binding to amyloid-like proteins with a beta-pleated sheet conformation. J. Histochem. Cytochem. 37:1273-1281 (1989).

    Google Scholar 

  31. D. Frenkel, O. Katz, and B. Solomon. Immunization against Alzheimer's beta-amyloid plaques via EFRH phage administration. Proc. Natl. Acad. Sci. U.S.A. 97:11455-11459 (2000).

    Google Scholar 

  32. E. Hanan, O. Goren, M. Eshkenazy, and B. Solomon. Immunomodulation of the human prion peptide 106-126 aggregation. Biochem. Biophys. Res. Commun. 280:115-120 (2001).

    Google Scholar 

  33. K. Sasaki, S. Dockerill, D. A. Adamiak, I. J. Tickle, and T. Blundell. X-ray analysis of glucagon and its relationship to receptor binding. Nature 257:751-757 (1975).

    Google Scholar 

  34. J. Liu, M. Bhalgat, C. Zhang, Z. Diwu, B. Hoyland, and D. H. Klaubert. Fluorescent molecular probes V: a sensitive caspase-3 substrate for fluorometric assays. Bioorg. Med. Chem. Lett. 9:3231-3236 (1999).

    Google Scholar 

  35. R. U. Janicke, M. L. Sprengart, M. R. Wati, and A. G. Porter. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273:9357-9360 (1998).

    Google Scholar 

  36. D. W. Nicholson, A. Ambereen, N. A. Thornberry, J. P. Vaillancourt, C. K. Ding, M. Gallant, Y. Gareau, P. R. Griffin, M. Labelle, Y. A. Lazebnik, N. A. Munday, S. M. Raju, M. E. Smulson, T. T. Yamin, V. L. Yu, and D. K. Miller. Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37-43 (1995).

    Google Scholar 

  37. E. A. Atkinson, M. Barry, A. J. Darmon, I. Shostak, P. C. Turner, R. W. Moyer, and R. C. Bleackley. Cytotoxic T lymphocyte-assisted suicide. Caspase 3 activation is primarily the result of the direct action of granzyme B. J. Biol. Chem. 273:21261-21266 (1998).

    Google Scholar 

  38. B. L. Chen, T. Arakawa, C. F. Morris, W. C. Kenney, C. M. Wells, and C. G. Pitt. Aggregation pathway of recombinant human keratinocyte growth factor and its stabilization. Pharm. Res. 11:1581-1587 (1994).

    Google Scholar 

  39. N. Demeester, C. Mertens, H. Caster, M. Goethals, J. Vandekerckhove, M. Rosseneu, and C. Labeur. Comparison of the aggregation properties, secondary structure and apoptotic effects of wild-type, Flemish and Dutch N-terminally truncated amyloid beta peptides. Eur. J. Neurosci. 13:2015-2024 (2001).

    Google Scholar 

  40. K. M. Pan, M. Baldwin, J. Kguyen, M. Gasset, A. Serban, D. Groth, I. Mehlhorn, Z. Huang, R. J. Fletterick, F. E. Cohen, and S. B. Prusiner. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90:10962-10966 (1993).

    Google Scholar 

  41. M. Kamihira, A. Naito, S. Tuzi, A. Y. Nosaka, and H. Saito. Conformational transitions and fibrillation mechanism of human calcitonin as studied by high-resolution solid-state 13C NMR. Protein Sci. 9:867-877 (2000).

    Google Scholar 

  42. H. J. Chae, S. W. Chae, N. H. An, J. H. Kim, C. W. Kim, S. K. Yoo, H. H. Kim, Z. H. Lee, and H. R. Kim. Cyclic-AMP inhibits nitric oxide-induced apoptosis in human osteoblast: the regulation of caspase-3,-6,-9 and the release of cytochrome c in nitric oxide-induced apoptosis by cAMP. Biol. Pharm. Bull. 24:453-460 (2001).

    Google Scholar 

  43. J. Li, S. Yang, and T. R. Billiar. Cyclic nucleotides suppress tumor necrosis factor alpha-mediated apoptosis by inhibiting caspase activation and cytochrome c release in primary hepatocytes via a mechanism independent of Akt activation. J. Biol. Chem. 275:13026-13034 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satomi Onoue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onoue, S., Ohshima, K., Debari, K. et al. Mishandling of the Therapeutic Peptide Glucagon Generates Cytotoxic Amyloidogenic Fibrils. Pharm Res 21, 1274–1283 (2004). https://doi.org/10.1023/B:PHAM.0000033016.36825.2c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000033016.36825.2c

Navigation