Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury

An Erratum to this article was published on 01 December 1999

Abstract

Early growth response factor-1 (Egr-1) binds to the promoters of many genes whose products influence cell movement and replication in the artery wall. Here we targeted Egr-1 using a new class of DNA-based enzyme that specifically cleaved Egr-1 mRNA, blocked induction of Egr-1 protein, and inhibited cell proliferation and wound repair in culture. The DNA enzyme also inhibited Egr-1 induction and neointima formation after balloon injury to the rat carotid artery wall. These findings demonstrate the utility of DNA enzymes as biological tools to delineate the specific functions of a given gene, and implicate catalytic nucleic acid molecules composed entirely of DNA as potential therapeutic agents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vitro cleavage of Egr-1 RNA.
Figure 2: Egr-1 DNA enzyme inhibits the induction of Egr-1 mRNA and protein by serum.
Figure 3: SMC proliferation is inhibited by Egr-1 DNA enzyme.
Figure 4: Cellular localization and stability of Egr-1 DNA enzymes.
Figure 5: Egr-1 DNA enzyme inhibits SMC repair after mechanical injury.
Figure 6: Sequence-specific inhibition of neointima formation by Egr-1 DNA enzyme in the rat carotid artery.
Figure 7: Immunoperoxidase detection of Egr-1 in balloon-injured carotid arteries treated with DNA enzyme.

Similar content being viewed by others

References

  1. Haseloff, J. & Gerlach, W.A. Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334, 585–591 (1988).

    Article  CAS  Google Scholar 

  2. Saxena, S.K. & Ackerman, E.J. Ribozymes correctly cleave a model substrate and endogenous RNA in vivo. J. Biol. Chem. 265, 17106–17109 (1990).

    CAS  PubMed  Google Scholar 

  3. McCall, M.J., Hendry, P. & Jennings, P.A. Minimal sequence requirements for ribozyme activity. Proc. Natl. Acad. Sci. USA 89, 5710–5714 (1992).

    Article  CAS  Google Scholar 

  4. James, H.A. & Gibson, I. The therapeutic potential of ribozymes. Blood 91, 371–382 (1998).

    CAS  PubMed  Google Scholar 

  5. Simayama, T., Nishikawa, F., Nishikawa, S. & Taira, K. Nuclease-resistant chimeric ribozymes containing deoxyribonucleotides and phosphorothioate linkages. Nucleic Acid Res. 21, 2605–2611 (1993).

    Article  Google Scholar 

  6. Heidenreich, O. & Eckstein, F. Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type-1. J. Biol. Chem. 267, 1904–1909 (1992).

    CAS  PubMed  Google Scholar 

  7. Santoro, S.W. & Joyce, G.F. A general purpose RNA-cleaving DNA enzyme. Proc. Natl. Acad. Sci. USA 94, 4262–4266 (1997).

    Article  CAS  Google Scholar 

  8. Kuwabara, T. et al. Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6 (b2a2) mRNA. Nucleic Acid Res. 25, 3074–3091 (1997).

    Article  CAS  Google Scholar 

  9. Stary, H.C. et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis: a report from the Committee on Vascular Lesions of the Council on Atherosclerosis, American Heart Association. Arterioscler. Thromb. Vasc. Biol. 15, 1512–1531 (1995).

    Article  CAS  Google Scholar 

  10. Holmes, D.R. et al. Restenosis after percutaneous transluminal coronary angioplasty (PTCA): a report from the PTCA Registry of the National Heart, Lung, and Blood Institute. Am. J. Cardiol. 53, 77C–81C (1984).

    Article  Google Scholar 

  11. Jackson, C.L. & Schwartz, S.M. Pharmacology of smooth muscle replication. Hypertension 20, 713–736 (1992).

    Article  CAS  Google Scholar 

  12. Libby, P., Schwartz, S.M., Brogi, E., Tanaka, H. & Clinton, S. A cascade model for restenosis. Circ. Res. 86 (Suppl. III), 47–52 (1995).

    Google Scholar 

  13. Schwartz, S.M., deBlois, D. & O'Brien, E.R.M. The intima: soil for atherosclerosis and restenosis. Circ. Res. 77, 445–465 (1995).

    Article  CAS  Google Scholar 

  14. Khachigian, L.M., Lindner, V., Williams, A.J. & Collins, T. Egr-1-induced endothelial gene expression: a common theme in vascular injury. Science 271, 1427–1431 (1996).

    Article  CAS  Google Scholar 

  15. Gashler, A.L. et al. Human platelet-derived growth factor A chain is transcriptionally repressed by the Wilms' tumor suppressor WT1. Proc. Natl. Acad. Sci. USA 89, 10984–10988 (1992).

    Article  CAS  Google Scholar 

  16. Khachigian, L.M. et al. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear-stress response element in the PDGF A-chain promoter. Arterioscl. Thromb. Vasc. Biol. 17, 2280–2286 (1997).

    Article  CAS  Google Scholar 

  17. Sumpio, B.E. et al. Regulation of PDGF-B by cyclic strain: lack of involvement of the shear-stress responsive element. Arterioscler. Thromb. Vasc. Biol. 18, 349–355 (1998).

    Article  CAS  Google Scholar 

  18. Delbridge, G.J. & Khachigian, L.M. FGF-1-induced PDGF A-chain gene expression in vascular endothelial cells involves transcriptional activation by Egr-1. Circ. Res. 81, 282–288 (1997).

    Article  CAS  Google Scholar 

  19. Santiago, F.S., Lowe, H.C., Day, F.L., Chesterman, C.N. & Khachigian, L.M. Egr-1 induction by injury is triggered by release and paracrine activation by fibroblast growth factor-2. Am. J. Pathol. 154, 937–944 (1999).

    Article  CAS  Google Scholar 

  20. Zuker, M. On finding all suboptimal foldings of an RNA molecule. Science 244, 48–52 (1989).

    Article  CAS  Google Scholar 

  21. Treisman, R. Journey to the surface of the cell: Fos regulation and the SRE. EMBO J. 14, 4905–4913 (1995).

    Article  CAS  Google Scholar 

  22. Gashler, A. & Sukhatme, V. Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors. Prog. Nucleic Acids Res. Mol. Biol. 50, 191–224 (1995).

    Article  CAS  Google Scholar 

  23. Santoro, S.W. & Joyce, G.F. Mechanism and utility of an RNA-cleaving DNA enzyme. Biochemistry 37, 13330–13342 (1998).

    Article  CAS  Google Scholar 

  24. Hallahan, D.E. et al. c-jun and Egr-1 participate in DNA synthesis and cell survival in response to ionizing radiation exposure. J. Biol. Chem. 270, 30303–30309 (1995).

    Article  CAS  Google Scholar 

  25. Seifert, R.A., Schwartz, S.M. & Bowen-Pope, D.F. Developmentally regulated production of platelet-derived growth factor-like molecules. Nature 311, 669–671 (1984).

    Article  CAS  Google Scholar 

  26. Majesky, M.W., Giachelli, C.M., Reidy, M.A. & Schwartz, S.M. Rat carotid neointimal smooth muscle cells reexpress a developmentally regulated mRNA phenotype during repair of arterial injury. Circ. Res. 71, 759–768 (1992).

    Article  CAS  Google Scholar 

  27. Majesky, M.W., Benditt, E.P. & Schwartz, S.M. Expression and developmental control of platelet-derived growth factor A-chain and B-chain/Sis genes in rat aortic smooth muscle cells. Proc. Natl. Acad. Sci. USA 85, 1524–1528 (1988).

    Article  CAS  Google Scholar 

  28. Lemire, J.M., Covin, C.W., White, S., Giachelli, C.M. & Schwartz, S.M. Characterization of cloned aortic smooth muscle cells from young rats. Am. J. Pathol. 144, 1068–1081 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rafty, L.A. & Khachigian, L.M. Zinc finger transcription factors mediate high constitutive PDGF-B expression in smooth muscle cells derived from aortae of newborn rats. J. Biol. Chem. 273, 5758–5764 (1998).

    Article  CAS  Google Scholar 

  30. Campbell, G.R. & Campbell, J.H. Smooth muscle phenotypic changes in arterial wall homeostasis: implications for the pathogenesis of atherosclerosis. Exp. Mol. Pathol. 42, 139–162 (1985).

    Article  CAS  Google Scholar 

  31. Pitsch, R.J. et al. Inhibition of smooth muscle cell proliferation and migration in vitro by antisense oligonucleotide to c-myb. J. Vasc. Surg. 23, 783–791 (1996).

    Article  CAS  Google Scholar 

  32. Clowes, A.W., Reidy, M.A. & Clowes, M.M. Kinetics of cellular proliferation after arterial injury. Lab. Invest. 49, 327–333 (1983).

    CAS  PubMed  Google Scholar 

  33. Buck, R.C. Intimal thickening after ligature of arteries. Circ. Res. 9, 418–426 (1961).

    Article  Google Scholar 

  34. Kobayashi, H., Dorai, T., Holland, J.F. & Ohnuma, T. Reversal of drug sensitivity in multidrug-resistant tumor cells by an MDR1 (PGY1) ribozyme. Cancer Res. 54, 1271–1275 (1994).

    CAS  PubMed  Google Scholar 

  35. Czubayko, F., Schulte, A.M., Berchem, G.J. & Wellstein, A. Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc. Natl. Acad. Sci. USA 93, 14753–14758 (1996).

    Article  CAS  Google Scholar 

  36. Bauer, G. et al. Inhibition of human immunodeficiency virus-1 (HIV-1) replication after transduction of granulocyte colony-stimulating factor-mobilized CD34(+) cells from HIV-infected doners using retroviral vectors containing anti-HIV-1 genes. Blood 89, 2259–2267 (1997).

    CAS  PubMed  Google Scholar 

  37. Crooke, S.T. & Bennett, C.F. Progress in antisense oligonucleotide therapeutics. Ann. Rev. Pharmacol. Toxicol. 36, 107–129 (1996).

    Article  CAS  Google Scholar 

  38. Dean, N.M. & Griffey, R.H. Identification and characterization of second-generation antisense oligonucleotides. Antisense Nucleic Acid Drug Dev. 7, 229–233 (1997).

    Article  CAS  Google Scholar 

  39. Dryden, S., Pickavance, L., Tidd, D. & Williams, G. The lack of specificity of neuropeptide Y (NPY) antisense oligodeoxynucleotides administered intracerebroventricularly in inhibiting food intake and NPY gene expression in the rat hypothalamus. J. Endocrinol. 157, 169–175 (1998).

    Article  CAS  Google Scholar 

  40. Sambrook, J., Fritsch, E.F. & Maniatis, T. in Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, Plainview, New York, 1989).

    Google Scholar 

  41. Khachigian, L.M., Williams, A.J. & Collins, T. Interplay of Sp1 and Egr-1 in the proximal PDGF-A promoter in cultured vascular endothelial cells. J. Biol. Chem. 270, 27679–27686 (1995).

    Article  CAS  Google Scholar 

  42. Horodyski, J. & Powell, R.J. Effect of aprotinin on smooth muscle cell proliferation, migration, and extracellular matrix synthesis. J. Surg. Res. 66, 115–118 (1996).

    Article  CAS  Google Scholar 

  43. Simons, M., Edelman, E. & Rosenberg, R.D. Antisense proliferation cell nuclear antigen oligonucleotides inhibit intimal hyperplasia in a rat carotid injury model. J. Clin. Invest. 93, 2351–2356 (1994).

    Article  CAS  Google Scholar 

  44. Halasz, P. & Martin, P. A microcomputer-based system for semi-automatic analysis of histological sections. Proc. Royal Microscop. Soc. 19, 312 (1984).

    Google Scholar 

  45. Houston, P. et al. Fluid shear stress induction of the tissue factor promoter in vitro and in vivo is mediated by Egr-1. Arterioscler. Thromb. Vasc. Biol. 19, 281–289 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Enno for advice on immunohistochemical analysis and P. Halasz for assistance with image analysis. This work was supported in part by a Strategic Partnership with Industry grant from the Australian Research Council (L.M.K.), and grants from the National Heart Foundation of Australia (L.M.K.), National Health and Medical Research Council of Australia (N.H.M.R.C) (L.M.K. and C.N.C.) and New South Wales Health Department. H.C.L. is supported by a Medical Postgraduate Research Scholarship (N.H.M.R.C.) and L.M.K. is the recipient of an R. Douglas Wright Fellowship (N.H.M.R.C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Levon M. Khachigian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santiago, F., Lowe, H., Kavurma, M. et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury. Nat Med 5, 1264–1269 (1999). https://doi.org/10.1038/15215

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/15215

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing