Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Presenilin is required for activity and nuclear access of Notch in Drosophila

Abstract

Presenilins are membrane proteins with multiple transmembrane domains that are thought to contribute to the development of Alzheimer's disease by affecting the processing of β-amyloid precursor protein1. Presenilins also facilitate the activity of transmembrane receptors of the LIN-12/Notch family2,3,4,5. After ligand-induced processing, the intracellular domain of LIN-12/Notch can enter the nucleus and participate in the transcriptional control of downstream target genes6,7,8,9. Here we show that null mutations in the Drosophila Presenilin gene abolish Notch signal transduction and prevent its intracellular domain from entering the nucleus. Furthermore, we provide evidence that presenilin is required for the proteolytic release of the intracellular domain from the membrane following activation of Notch by ligand.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Presenilin activity is required for Notch activity.
Figure 2: Presenilin is required for nuclear access of Notch.
Figure 3: Model for LIN-12/Notch signal transduction.

Similar content being viewed by others

References

  1. Selkoe, D. J. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447–453 (1998).

    Article  CAS  Google Scholar 

  2. Levitan, D. & Greenwald, I. Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer's disease gene. Nature 377, 351–354 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Li, X. & Greenwald, I. HOP-1, a Caenorhabditis elegans presenilin, appears to be functionally redundant with SEL-12 presenilin and to facilitate LIN-12 and GLP-1 signalling. Proc. Natl Acad. Sci. USA 94, 12204–12209 (1997).

    Article  ADS  CAS  Google Scholar 

  4. Shen, J. et al. Skeletal and CNS defects in Presenilin-1 deficient mice. Cell 89, 629–639 (1997).

    Article  CAS  Google Scholar 

  5. Wong, P. C. et al. Presenilin 1 is required for Notch1 and Dll1 expression in the paraxial mesoderm. Nature 387, 288–292 (1997).

    Article  ADS  CAS  Google Scholar 

  6. Struhl, G. & Adachi, A. Nuclear access and action of Notch in vivo. Cell 93, 649–660 (1998).

    Article  CAS  Google Scholar 

  7. Schroeter, E. H., Kisslinger, J. A. & Kopan, R. Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393, 381–386 (1998).

    Article  ADS  Google Scholar 

  8. Lecourtois, M. & Schweisguth, F. Indirect evidence for Delta-dependent intracellular processing of Notch in Drosophila embryos. Curr. Biol. 8, 771–774 (1998).

    Article  CAS  Google Scholar 

  9. Kidd, S., Lieber, T. & Young, M. W. Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes Dev. 12, 3728–3740 (1998).

    Article  CAS  Google Scholar 

  10. DeStrooper, B. et al. Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391, 387–380 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Greenwald, I. LIN-12/Notch signaling: lessons from worms and flies. Genes Dev. 12, 1751–1762 (1998).

    Article  CAS  Google Scholar 

  12. Blaumueller, C. M., Qui, H., Zagouras, P. & Artavanis-Tsakonas, S. Intracellular cleavage of Notch leads to a heterodimeric receptor on the plasma membrane. Cell 90, 281–291 (1997).

    Article  CAS  Google Scholar 

  13. Logeat, F. et al. the Notch1 receptor is cleaved constitutively by a furin-like convertase. Proc. Natl Acad. Sci. USA 95, 8108–8112 (1998).

    Article  ADS  CAS  Google Scholar 

  14. Levitan, D. & Greenwald, I. Effects of SEL-12 presenilin on LIN-12 localization and function in C. elegans. Development 125, 3599–3606 (1998).

    CAS  PubMed  Google Scholar 

  15. Boulianne, G. L. et al. Cloning and characterization of the Drosophila presenilin homologue. Neuroreport 8, 1025–1029 (1997).

    Article  CAS  Google Scholar 

  16. Hong, C. S. & Koo, E. H. Isolation and characterization of Drosophila presenilin homolog. Neuroreport 8, 665–668 (1997).

    Article  CAS  Google Scholar 

  17. Marfany, G. et al. Identification of a Drosophila presenilin homologue: evidence of alternatively spliced forms. J. Neurogenet. 12, 41–45 (1993).

    Article  Google Scholar 

  18. Struhl, G., Fitzgerald, K. & Greenwald, I. Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell 74, 331–45 (1993).

    Article  CAS  Google Scholar 

  19. Menne, T. V. & Klaembt, C. The formation of commissures in the Drosophila CNS depends on the midline cells and on the Notch gene. Development 120, 123–133 (1994).

    CAS  PubMed  Google Scholar 

  20. Blair, S. S. Compartments and appendage development in Drosophila. Bioessays 17, 299–309 (1995).

    Article  CAS  Google Scholar 

  21. Huppert, S. S., Jacobsen, T. L. & Muskavitch, M. Feedback regulation is central to Delta-Notch signalling required for Drosophila wing vein morphogenesis. Development 124, 3283–3291 (1997).

    CAS  PubMed  Google Scholar 

  22. Ye, Y. & Fortini, M. E. Characterization of Drosophila Presenilin and its colocalization with Notch during development. Mech. Dev. 79, 199–211 (1998).

    Article  CAS  Google Scholar 

  23. Li, X. & Greenwald, I. Additional evidence for an eight-transmembrane-domain topology for Caenorhabditis elegans and human presenilins. Proc. Natl Acad. Sci. USA 95, 7109–7114 (1998).

    Article  ADS  CAS  Google Scholar 

  24. Chou, T. B. & Perrimon, N. Use of a yeast site-specific recombinase to produce female germline chimeras in Drosophila. Genetics 131, 643–653 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Golic, K. G. Site-specific recombination between homologous chromosomes in Drosophila. Science 252, 958–961 (1991).

    Article  ADS  CAS  Google Scholar 

  26. Rulifson, E. J. & Blair, S. S. Notch regulates wingless expression and is not required for reception of the paracrine wingless signal during wing margin neurogenesis in Drosophila. Development 121, 2813–2824 (1995).

    CAS  PubMed  Google Scholar 

  27. Greenwald, I. & Seydoux, G. Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature 346, 197–1999 (1990).

    Article  ADS  CAS  Google Scholar 

  28. Heitzler, P. & Simpson, P. Altered epidermal growth factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development 117, 1113–1123 (1993).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Jiang and C.-M. Chen for the isolation and preliminary characterization of the PS alleles as neurogenic mutations; A. Adachi, R.Perez and X.-J. Qin for technical assistance; S. T. Crews, T. Lieber and P. M. Macdonald for antisera; and R. Axel, D. Brower, S.-K. Chan, H.-M. Chung and M. Zecca for advice and discussion. G.S. is an investigator and I.G. is an associate investigator of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gary Struhl or Iva Greenwald.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Struhl, G., Greenwald, I. Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature 398, 522–525 (1999). https://doi.org/10.1038/19091

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/19091

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing