Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

G-protein-coupled receptor heterodimerization modulates receptor function

Abstract

The opioid system modulates several physiological processes, including analgesia, the stress response, the immune response and neuroendocrine function1. Pharmacological and molecular cloning studies have identified three opioid-receptor types, δ, κ and µ, that mediate these diverse effects2,3. Little is known about the ability of the receptors to interact to form new functional structures, the simplest of which would be a dimer. Structural and biochemical studies show that other G-protein-coupled receptors (GPCRs) interact to form homodimers4,5. Moreover, two non-functional receptors heterodimerize to form a functional receptor, suggesting that dimerization is crucial for receptor function6,7,8,9,10,11. However, heterodimerization between two fully functional receptors has not been documented. Here we provide biochemical and pharmacological evidence for the heterodimerization of two fully functional opioid receptors, κ and δ. This results in a new receptor that exhibits ligand binding and functional properties that are distinct from those of either receptor. Furthermore, the κ–δ heterodimer synergistically binds highly selective agonists and potentiates signal transduction. Thus, heterodimerization of these GPCRs represents a novel mechanism that modulates their function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of κ-opioid-receptor homodimers.
Figure 2: Characterization of κ–δ heterodimers.
Figure 3: Ligand binding and functional properties.

Similar content being viewed by others

References

  1. Herz, A. Opioids Vol. 1(Springer, Berlin, 1993).

    Google Scholar 

  2. Miotto, K., Magendzo, K. & Evans, C. J. in The Pharmacology of Opioid Peptides(ed. Tseng, L.) 57–71 (Harwood, Singapore, 1995).

    Google Scholar 

  3. Kieffer, B. L. Recent advances in molecular recognition and signal transduction of active peptides: receptors for opioid peptides. Cell. Mol. Neurobiol. 15, 615–635 ( 1995).

    Article  CAS  Google Scholar 

  4. Hebert, T. E. & Bouvier, M. Structural and functional aspects of G protein-coupled receptor oligomerization. Biochem. Cell Biol. 76, 1–11 (1998 ).

    Article  CAS  Google Scholar 

  5. Gouldson, P. R., Snell, C. R., Bywater, R. P., Higgs, C. & Reynolds, C. A. Domain swapping in G-protein coupled receptor dimers. Protein Eng. 11, 1181–1193 (1998).

    Article  CAS  Google Scholar 

  6. Maggio, R., Vogel, Z. & Wess, J. Co-expression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular cross-talk between G-protein-linked receptors. Proc. Natl Acad. Sci. USA 90, 3103– 3107 (1993).

    Article  ADS  CAS  Google Scholar 

  7. Monnot, C. et al . Polar residues in the transmembrane domains of the type I angiotensin II receptor are required for binding and coupling: Reconstitution of the binding site by co-expression of two deficient mutants. J. Biol. Chem. 271, 1507–1513 ( 1996).

    Article  CAS  Google Scholar 

  8. Jones, K. A. et al . GABAB receptors function as a heteromeric assembly fo the subunits GABABR1 and GABABR2. Nature 396, 674–679 ( 1998).

    Article  ADS  CAS  Google Scholar 

  9. Kaupmann, K. et al . GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683– 687 (1998).

    Article  ADS  CAS  Google Scholar 

  10. White, J. H. et al . Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679 –682 (1998).

    Article  ADS  CAS  Google Scholar 

  11. Kuner, R. et al . Role of heteromer formation in GABAB receptor function. Science 283, 74–77 (1999).

    Article  ADS  CAS  Google Scholar 

  12. Cvejic, S. & Devi, L. Dimerization of the delta opioid receptor; implications for a function in receptor internalization. J. Biol. Chem. 272, 26959–26964 ( 1997).

    Article  CAS  Google Scholar 

  13. Romano, C., Yang, W. & O'Malley, K. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612– 28616 (1996).

    Article  CAS  Google Scholar 

  14. Bai, M., Trivedi, S. & Brown, E. M. Dimerization of the extracellular calcium-sensing receptor on the cell surface of CaR-transfected HEK-293 cells. J. Biol. Chem. 273, 23605–23610 (1998).

    Article  CAS  Google Scholar 

  15. Trapaidze, N., Keith, D. E., Cvejic, S., Evans, C. J. & Devi, L. A. Sequestration of the delta opioid receptor: Role of the C terminus in agonist-mediated internalization. J. Biol. Chem. 271, 29279–29285 ( 1996).

    Article  CAS  Google Scholar 

  16. Keith, D. E. et al . Morphine activates opioid receptors without causing their rapid internalization. J. Biol. Chem. 271, 19021–19024 (1996).

    Article  CAS  Google Scholar 

  17. Chu, P., Murray, S., Lissin, D. & von Zastrow, M. Delta and kappa opioid receptors are differentially regulated by dynamin-dependent endocytosis when activated by the same alkaloid agonist. J. Biol. Chem. 272, 27124–27130 (1997).

    Article  CAS  Google Scholar 

  18. Lahti, R. A., Mickelson, M. M., McCall, J. M. & Von Voigtlander, P. [3H]U-69593, a highly selective ligand for the opioid κ receptor. Eur. J. Pharmacol. 109, 281– 284 (1985).

    Article  CAS  Google Scholar 

  19. Roth, G. et al . [D-Pen2,D-Pen5]enkephalin analogues with increased affinity and selectivity for δ opioid receptors. J. Med. Chem. 258, 299–303 (1990).

    Google Scholar 

  20. Portoghese, P. S., Lipkowski, A. W. & Takemori, A. E. Binaltrophimine and norbinaltrophimine, potent and selective κ-opioid receptor antagonists. Life Sci. 40, 1287–1292 (1987).

    Article  CAS  Google Scholar 

  21. Schiller, P. et al . TIPPΨ: A highly potent and stable pseudopeptide δ opioid receptor antagonist with extraordinary δ selectivity. J. Med. Chem. 36, 3182–3187 (1993).

    Article  CAS  Google Scholar 

  22. Zukin, R. S., Echbali, M., Olive, D., Unterwald, E. M. & Tempel, A. Characterization and visualization of rat and guinea pig brain κ opioid receptors: Evidence for κ1 and κ 2 opioid receptors. Proc. Natl Acad. Sci. USA 4061–4065 (1988).

  23. Nock, B. in The Pharmacology of Opioid Peptides(ed. Tseng, L.) 29– 56 (Harwood, Singapore, 1995).

    Google Scholar 

  24. Traynor, J. R. & Elliott, J. Delta opioid receptor subtypes and cross talk with mu receptors. Trends Pharmacol. Sci. 14, 84–86 ( 1993).

    Article  CAS  Google Scholar 

  25. Zaki, P. A. et al . Opioid receptor types and subtypes: the delta receptor as a model. Annu. Rev. Pharmacol. Toxicol. 36, 379–401 (1996).

    Article  CAS  Google Scholar 

  26. Jordan, B. & Devi, L. A. Molecular mechanisms of opiate receptor signal transduction. Br. J. Anaesth. 81, 12–19 (1998).

    Article  CAS  Google Scholar 

  27. Lord, J. A. H., Waterfield, A. A., Hughes, J. & Kosterlitz, H. W. Endogenous opioid peptides: Multiple agonists and receptors. Nature 267, 495–499 ( 1977).

    Article  ADS  CAS  Google Scholar 

  28. Cvejic, S., Trapaidze, N., Cyr, C. & Devi, L. A. Thr353, located within the COOH-terminal tail of the delta opiate receptor, is involved in receptor down-regulation. J. Biol. Chem. 271, 4073–4076 (1996).

    Article  CAS  Google Scholar 

  29. Cheng, Y. C. & Prusoff, W. H. Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzyme reaction. Biochem. Pharmacol. 22, 3099–3102 ( 1973).

    Article  CAS  Google Scholar 

  30. Polakiewicz, R., Schieferl, S. M., Dorner, L. F., Kansra, V. & Comb, M. J. Amitogen-activated protein kinase pathway is required for mu-opioid receptor desensitization. J. Biol. Chem. 273, 12402–12406 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Fricker and S. Cvejic for critical reading of the manuscript and P.Schiller for the gift of TIPPΨ. This work is supported in part by grants from the NIH (NIDA and NINDS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakshmi A. Devi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jordan, B., Devi, L. G-protein-coupled receptor heterodimerization modulates receptor function . Nature 399, 697–700 (1999). https://doi.org/10.1038/21441

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/21441

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing