Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake

A Corrigendum to this article was published on 11 October 1974

Abstract

AXELROD1 found that released noradrenaline is recaptured by presynaptic nerve terminals, and proposed reuptake as a mechanism for rapid neurotransmitter inactivation. Subsequent studies led to the identification of high and low-affinity components in the uptake of several putative neurotransmitters by nerve terminals2–7. Although the apparent Km values reported for the high-affinity uptake of some neurotransmitters (notably amino acids) are comparable to those reported for the low-affinity uptake of other neurotransmitters, it is generally thought that the inactivation of most neurotransmitter amino acids is obtained through high-affinity uptake systems having a Km of the order of 10−5 M. Indeed, the existence of a high-affinity uptake for a given substance is often considered to favour its being a neurotransmitter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Axelrod, J., Harvey Lect., 67, 175 (1973).

    CAS  PubMed  Google Scholar 

  2. Iversen, L. L., in Biochemistry of simple neuronal models (edit. by Costa, E., and Giacobini, E.) 109 (Raven Press, New York, 1970).

    Google Scholar 

  3. Snyder, S. H., Kuhar, M. J., Green, A. I., Coyle, J. T., and Shaskan, E. G., Int. Rev. neurobiol., 13, 127 (1970).

    Article  CAS  Google Scholar 

  4. Iversen, L. L., and Johnston, G. A. R., J. Neurochem., 18, 1939 (1971).

    Article  CAS  PubMed  Google Scholar 

  5. Johnston, G. A. R., and Iversen, L. L., J. Neurochem., 18, 1951 (1971).

    Article  CAS  PubMed  Google Scholar 

  6. Levi, G., and Raiteri, M., Life Sci. (part I) 12, 81 (1973).

    Article  CAS  Google Scholar 

  7. Snyder, S. H., Young, A. B., Bennett, J. P., and Mulder, A. H., Fedn. Proc., 32, 2039 (1973).

    CAS  Google Scholar 

  8. Le Fevre, P. G., and McGinnis, G. F., J. gen. Physiol., 44, 87 (1960).

    Article  CAS  Google Scholar 

  9. Heinz, E., A. Rev. Physiol., 29, 21 (1967).

    Article  CAS  Google Scholar 

  10. Iversen, L. L., and Neal, M. J., J. Neurochem., 15, 1141 (1968).

    Article  CAS  PubMed  Google Scholar 

  11. Aprison, M. H., and McBride, W. J., Life Sci. (Part I) 12, 449 (1973).

    Article  CAS  Google Scholar 

  12. Levi, G., Bertollini, A., Chen, J., and Raiteri, M., J. Pharmac. exp. Ther., 188, 429 (1974).

    CAS  Google Scholar 

  13. Gray, E. G., and Whittaker, V. P., J. Anat., 96, 79 (1962).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Raiteri, M., Angelini, F., and Levi, G., Eur. J. Pharmac., 25, 411 (1974).

    Article  CAS  Google Scholar 

  15. Levi, G., Blasberg, R., and Lajtha, A., Archs Biochem. Biophys., 144, 339 (1966).

    Article  Google Scholar 

  16. Crnic, D. M., Hammerstad, J. P., and Cutler, R. W. P., J. Neurochem., 20, 203 (1973).

    Article  CAS  PubMed  Google Scholar 

  17. Weinstein, H., Varon, S., Muhleman, D., and Roberts, E., Biochem. Pharmac., 14, 273 (1965).

    Article  CAS  Google Scholar 

  18. Martin, D. L., J. Neurochem., 21, 345 (1973).

    Article  CAS  PubMed  Google Scholar 

  19. Levi, G., Archs. Biochem. Biophys., 151, 8 (1972).

    Article  CAS  Google Scholar 

  20. Aprison, M. H., Davidoff, R. A., and Werman, R., in Handbook of Neurochemistry (edit. by Lajtha, A.) III, 281 (Plenum Press, New York, 1970).

    Google Scholar 

  21. Curtis, D. R., and Johnson, G. A. R., in Handbook of Neurochemistry (edit. by Lajtha, A.) IV, 115 (Plenum Press, New York, 1970).

    Google Scholar 

  22. Henn, F., Hamberger, A., Proc. natn. Acad. Sci., U.S.A., 68, 2686 (1971).

    Article  ADS  CAS  Google Scholar 

  23. Schon, F., and Kelly, J. S., Brain Res., 66, 289 (1974).

    Article  CAS  Google Scholar 

  24. Iversen, L. L., and Bloom, F. E., Brain Res., 41, 131 (1972).

    Article  CAS  PubMed  Google Scholar 

  25. Braun, J. P., and Perham, R. N., Eur. J. Biochem., 39, 69 (1973).

    Article  Google Scholar 

  26. Levi, G., and Raiteri, M., Brain Res., 57, 165 (1973).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

LEVI, G., RAITERI, M. Exchange of neurotransmitter amino acid at nerve endings can simulate high affinity uptake. Nature 250, 735–737 (1974). https://doi.org/10.1038/250735a0

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1038/250735a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing