Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors

Abstract

The peptide nociceptin (also named orphanin FQ) acts in the brain to produce various pharmacological effects, including hyperalgesia and hypolocomotion1,2. The nociceptin receptor uses guanine-nucleotide-binding proteins to mediate the inhibition of adenylyl cyclase, the activation of potassium channels and inhibition of calcium channels3. It has been shown using knockout mice that the nociceptin receptor is not required for regulation of nociceptive responses or locomotion activity, but modulates the auditory function4. Here we show that mice lacking the nociceptin receptor possess greater learning ability and have better memory than control mice. Histological analysis revealed the expression of both the nociceptin precursor and the nociceptin receptor in the hippocampus, thought to take part in aspects of learning and memory. Moreover, the receptor-deficient mice showed larger long-term potentiation in the hippocampal CA1 region than control mice, without apparent changes in presynaptic or postsynaptic electrophysiological properties. These results show that the loss of the nociceptin receptor results in a gain-of-function mutation in both the memory process and the long-term potentiation mechanism in CA1, perhaps as a result of altered intracellular signal transduction systems in neurons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Performance in Morris water-maze task in nociceptin receptor-deficient and wild-type mice.
Figure 2: Performance in multiple-trial passive avoidance test in nociceptin receptor-deficient and wild-type mice.
Figure 3: Expression of nociceptin precursor and nociceptin receptor in hippocampal regions.
Figure 4: Enhanced LTP in nociceptin receptor-deficient mice.

Similar content being viewed by others

References

  1. Meunier, J.-C. et al. Isolation and structure of the endogenous agonist of the opioid receptor-like ORL1 receptor. Nature 377, 532–535 (1995).

    Article  ADS  CAS  Google Scholar 

  2. Reinscheid, R. K. et al. Orphanin FQ: a neuropeptide that activates an opioidlike G protein-coupled receptor. Science 270, 792–794 (1995).

    Article  ADS  CAS  Google Scholar 

  3. Henderson, G. & McKnight, A. T. The orphan opioid receptor and its endogenous ligand-nociceptin/orphanin FQ. Trends Pharmacol. Sci. 18, 293–300 (1997).

    Article  CAS  Google Scholar 

  4. Nishi, M. et al. Unrestrained nociceptive response and disregulation of hearing ability in mice lacking the nociceptin/orphaninFQ receptor. EMBO J. 16, 1858–1864 (1997).

    Article  CAS  Google Scholar 

  5. Morris, R. G. M. Spatial localization does not depend on the presence of local cues. Learn. Motiv. 12, 239–260 (1981).

    Article  Google Scholar 

  6. Tsien, J. Z., Huerta, P. T. & Tonegawa, S. The essential role of hippocampal CA1 NMDA receptor-dependent synaptic plasticity in spatial memory. Cell 87, 1327–1338 (1996).

    Article  CAS  Google Scholar 

  7. Yamada, K. et al. The role of nitric oxide in dizocilpine-induced impairment of spontaneous alternation behavior in mice. J. Pharmacol. Exp. Ther. 276, 460–466 (1996).

    CAS  PubMed  Google Scholar 

  8. Bliss, T. V. P. & Collingridge, G. L. Asynaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31–39 (1993).

    Article  ADS  CAS  Google Scholar 

  9. Knoflach, F., Reinscheid, R. K., Civelli, O. & Kemp, J. A. Modulation of voltage-gated calcium channels by orphanin FQ in freshly dissociated hippocampal neurons. J. Neurosci. 16, 6657–6664 (1996).

    Article  CAS  Google Scholar 

  10. Takahashi, T. & Momiyama, A. Different types of calcium channels mediate central synaptic transmission. Nature 366, 156–158 (1993).

    Article  ADS  CAS  Google Scholar 

  11. Manabe, T., Wyllie, D. J. A., Perkel, D. J. & Nicoll, R. A. Modulation of synaptic transmission and long-term potentiation; effects on paired pulse facilitation and EPSC variance in the CA1 region of the hippocampus. J. Neurophysiol. 70, 1451–1459 (1993).

    Article  CAS  Google Scholar 

  12. Ikeda, K. et al. Functional coupling of the nociceptin/orphanin FQ receptor with the G-protein-activated K+ (GIRK) channel. Mol. Brain Res. 45, 117–126 (1997).

    Article  CAS  Google Scholar 

  13. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Magnesium gates glutamate-activated channels in mouse central neurons. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurons. Nature 309, 261–263 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Mamiya, T., Noda, Y., Nishi, M., Takeshima, H. & Nabeshima, T. Enhancement of spatial attention in nociceptin receptor-knockout mice. Brain Res. 783, 236–240 (1998).

    Article  CAS  Google Scholar 

  16. Nabeshima, T. & Ichihara, K. Paradigms for the Study of Behavior, Vol. 14 (ed. Conn, P. M.) 217–229 (Academic, San Diego, (1993)).

    Book  Google Scholar 

  17. Sandin, J., Georgieva, A. J., Schott, P. A., Ogren, S. O. & Terenius, L. Nociceptin/orphanin FQ microinjected into hippocampus impairs spatial learning in rats. Eur. J. Neurosci. 9, 194–197 (1997).

    Article  CAS  Google Scholar 

  18. Yu, T. P., Fein, J., Phan, T., Evans, C. J. & Xie, C. W. Orphanin FQ inhibits synaptic transmission and long-term potentiation in rat hippocampus. Hippocampus 7, 88–94 (1997).

    Article  CAS  Google Scholar 

  19. Madison, D. V. & Nicoll, R. A. Noradrenaline blocks accommodation of pyramidal cell discharge in the hippocampus. Nature 299, 636–638 (1982).

    Article  ADS  CAS  Google Scholar 

  20. Frey, U., Huang, Y.-Y. & Kandel, E. R. Effects of cAMP simulate a late phase of LTP in hippocampal CA1 neurons. Science 260, 1661–1664 (1993).

    Article  ADS  CAS  Google Scholar 

  21. Blitzer, R. D., Wong, T., Nouranifar, R., Iyengar, R. & Landau, E. M. Postsynaptic cAMP pathway gates early LTP in hippocampal CA1 region. Neuron 15, 1403–1414 (1995).

    Article  CAS  Google Scholar 

  22. Thomas, M. J., Moody, T. D., Makhinson, M. & O'Dell, T. J. Activity-dependent β-adrenergic modulation of low frequency stimulation induced LTP in the hippocampal CA1 region. Neuron 17, 475–482 (1996).

    Article  CAS  Google Scholar 

  23. Hu, G.-Y. et al. Protein kinase C injection into hippocampal pyramidal cells elicits features of long-term potentiation. Nature 328, 426–429 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Malinow, R., Schulman, H. & Tsien, R. W. Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245, 862–866 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Lou, L.-G., Ma, L. L. & Pei, G. Nociceptin/orphanin FQ activates protein kinase C, and this effect is mediated through phospholipase C/Ca2+ pathway. Biochem. Biophys. Res. Commun. 240, 304–308 (1997).

    Article  CAS  Google Scholar 

  26. Fukuda, K., Shoda, T., Morikawa, H., Kato, S. & Mori, K. Activation of mitogen-activated protein kinase by the nociceptin receptor expressed in Chinese hamster ovary cells. FEBS Lett. 412, 290–294 (1997).

    Article  CAS  Google Scholar 

  27. Bajocchi, G., Feldman, S. H., Crystal, R. G. & Mastrangeli, A. Direct in vivo gene transfer to ependymal cells in the central nervous system using recombinant adenovirus vector. Nature Genet. 3, 229–234 (1993).

    Article  CAS  Google Scholar 

  28. Houtani, T., Nishi, M., Takeshima, H., Nukada, T. & Sugimoto, T. Structure and regional distribution of nociceptin/orphanin FQ precursor. Biochem. Biophys. Res. Commun. 219, 714–719 (1996).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Sakamoto and I. Dobashi for help maintaining the mutant mice. This work was supported in part by grants from the Ministry of Education, Science, Sports and Culture of Japan, the Japan Private School Promotion Foundation, the Uehara Memorial Foundation, the TMFC and the Life Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takeshima.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manabe, T., Noda, Y., Mamiya, T. et al. Facilitation of long-term potentiation and memory in mice lacking nociceptin receptors. Nature 394, 577–581 (1998). https://doi.org/10.1038/29073

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29073

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing