Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Morphine and δ-opiate agonists locally stimulate in vivo dopamine release in cat caudate nucleus

Abstract

The peripheral administration of morphine1–4 or the intraventricular injection of either Met-enkephalin or D-Ala2-Met-enkephalinamide4 (a synthetic enkephalin analogue resistant to enzyme degradation) enhanced dopamine (DA) turnover in the rat striatum. These effects, in turn, could be blocked by the opiate antagonist naloxone1,4. As the striatum contains a high density of opiate receptors5, these drugs may be affecting DA metabolism by a local action. This hypothesis is supported by the evidence that morphine still enhanced striatal DA turnover shortly after transection of the nigro-striatal DA pathway6. Furthermore, D-Ala2-Met-enkephalinamide directly injected into the striatum significantly increased striatal DA turnover4. However, the mechanism by which opiates stimulate DA turnover is not clear because they have not yet been shown to enhance DA outflow in in vitro release studies7–9. We have therefore now examined in vivo the local effects of opiates on the release of DA in the cat caudate nucleus. We find that both morphine and more markedly, D-Ala2-Met-enkephalinamide stimulate DA release. The action of morphine is antagonized by naloxone, but that of the synthetic enkephalin is not. Because the effects of D-Ala2-Met-enkephalinamide are similar to those of the peripheral δ-receptor agonist Tyr-D-Ser-Gly-Phe-Leu-Thr, we conclude that the synthetic enkephalin acts on δ-receptors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuschinsky, K. & Hornykiewicz, O. Eur. J. Pharmac. 19, 119–122 (1972).

    Article  CAS  Google Scholar 

  2. Gauchy, C. et al. Eur. J. Pharmac. 22, 311–319 (1973).

    Article  CAS  Google Scholar 

  3. Westerink, B. H. C. & Korf, J. Eur. J. Pharmac. 38, 281–291 (1976).

    Article  CAS  Google Scholar 

  4. Biggio, G. et al. Science 200, 552–554 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Pollard, H., Llorens-Cortes, C. & Schwartz, J. C. Nature 268, 745–747 (1977).

    Article  ADS  CAS  Google Scholar 

  6. Moleman, P. & Bruinvels, J. Nature 281, 686–687 (1979).

    Article  ADS  CAS  Google Scholar 

  7. Loh, H. H. et al. Nature 264, 567–568 (1976).

    Article  ADS  CAS  Google Scholar 

  8. Arbilla, S. & Langer, S. Z. Nature 271, 559–560 (1978).

    Article  ADS  CAS  Google Scholar 

  9. Subramanian, N. et al. Naunyn Schmiedebergs Archs Pharmak. 299, 163–166 (1977).

    Article  CAS  Google Scholar 

  10. Nieoullon, A. et al. J. Neurochem. 28, 819–828 (1977).

    Article  CAS  Google Scholar 

  11. Glowinski, J. et al. The Neurobiology of Dopamine (eds Horn, A. Korf, J. & Westerink, B. 199–216 (Academic, New York, 1979).

    Google Scholar 

  12. Nieoullon, A. et al. Brain Res. 145, 69–83 (1978).

    Article  CAS  Google Scholar 

  13. Sawynok, J. et al. Life Sci. 25, 1621–1632 (1979).

    Article  CAS  Google Scholar 

  14. Gruol, D. L. et al. Brain Res. 198, 323–332 (1980).

    Article  CAS  Google Scholar 

  15. Lord, J. A. H. et al. Nature 267, 495–499 (1977).

    Article  ADS  CAS  Google Scholar 

  16. Fields, H. L. et al. Nature 284, 351–353 (1980).

    Article  ADS  CAS  Google Scholar 

  17. Gacel, G., Fournie-Zaluski, M. C. & Roques, B. FEBS Lett. 245–247 (1980).

  18. Giorguieff-Chesselet, M. F. et al. Neurosci. Lett. 14, 177–182 (1979).

    Article  CAS  Google Scholar 

  19. Chéramy, A. et al. Eur. J. Pharmac, 48, 281–295 (1978).

    Article  Google Scholar 

  20. Westfall, T. C. et al. Naunyn Schmiedebergs Archs Pharmak. 292, 279–287 (1976).

    Article  CAS  Google Scholar 

  21. Pollard, H. et al. Brain Res. 151, 392–398 (1978).

    Article  CAS  Google Scholar 

  22. Szerb, J. Naunyn Schmiedebergs Archs Pharmak. 311, 119–127 (1980).

    Article  CAS  Google Scholar 

  23. Jessel, T. & Iversen, L. L. Nature 268, 549–551 (1977).

    Article  ADS  Google Scholar 

  24. Sar, M. et al. J. comp. Neurol. 182, 17–38 (1978).

    Article  CAS  Google Scholar 

  25. Cesselin, F. et al. Neuroscience (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chesselet, M., Chéramy, A., Reisine, T. et al. Morphine and δ-opiate agonists locally stimulate in vivo dopamine release in cat caudate nucleus. Nature 291, 320–322 (1981). https://doi.org/10.1038/291320a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/291320a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing