Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A dual thrombin receptor system for platelet activation

Abstract

Platelet-dependent arterial thrombosis triggers most heart attacks and strokes. Because the coagulation protease thrombin is the most potent activator of platelets1, identification of the platelet receptors for thrombin is critical for understanding thrombosis and haemostasis. Protease-activated receptor-1 (PAR1) is important for activation of human platelets by thrombin2,3,4,5,6, but plays no apparent role in mouse platelet activation7,8,9. PAR3 is a thrombin receptor that is expressed in mouse megakaryocytes10. Here we report that thrombin responses in platelets from PAR3-deficient mice were markedly delayed and diminished but not absent. We have also identified PAR4, a new thrombin-activated receptor. PAR4 messenger RNA was detected in mouse megakaryocytes and a PAR4-activating peptide caused secretion and aggregation of PAR3-deficient mouse platelets. Thus PAR3 is necessary for normal thrombin responses in mouse platelets, but a second PAR4-mediated mechanism for thrombin signalling exists. Studies with PAR-activating peptides suggest that PAR4 also functions in human platelets, which implies that an analogous dual-receptor system also operates in humans. The identification of a two-receptor system for platelet activation by thrombin has important implications for the development of antithrombotic therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of PAR3-deficient mice.
Figure 2: Thrombin responses in PAR3-deficient platelets.
Figure 3: PAR4 amino-acid sequence and signalling properties.
Figure 4: Expression of PAR4 in mouse megakaryocytes and evidence for PAR4 function in mouse and human platelets.

Similar content being viewed by others

References

  1. Davey, M. & Luscher, E. Actions of thrombin and other coagulant and proteolytic enzymes on blood platelets. Nature 216, 857–858 (1967).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Vu, T.-K. H., Hung, D. T., Wheaton, V. I. & Coughlin, S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057–1068 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Hung, D. T., Vu, T.-K. H., Wheaton, V. I., Ishii, K. & Coughlin, S. R. The cloned platelet thrombin receptor is necessary for thrombin-induced platelet activation. Blocking antiserum to the thrombin receptor's hirudin-like domain. J. Clin. Invest. 89, 1350–1353 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brass, L. F. et al. Structure and function of the human platelet thrombin receptor. Studies using monoclonal antibodies directed against a defined domain within the receptor N terminus. J. Biol. Chem. 267, 13795–13798 (1992).

    CAS  PubMed  Google Scholar 

  5. Vassallo, R. J., Kieber, E. T., Cichowski, K. & Brass, L. F. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J. Biol. Chem. 267, 6081–6085 (1992).

    CAS  PubMed  Google Scholar 

  6. Scarborough, R. M. et al. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J. Biol. Chem. 267, 13146–13149 (1992).

    CAS  PubMed  Google Scholar 

  7. Connolly, T. M. et al. Species variability in platelet and other cellular responsiveness to thrombin receptor-derived peptides. Thromb. Hemost. 72, 627–633 (1994).

    Article  CAS  Google Scholar 

  8. Derian, C. K., Santulli, R. J., Tomko, K. A., Haertlein, B. J. & Andrade-Gordon, P. Species differences in platelet responses to thrombin and SFLLRN. Receptor-mediated calcium mobilization and aggregation and regulation by protein kinases. Thromb. Res. 6, 505–519 (1995).

    Article  Google Scholar 

  9. Connolly, A. J., Ishihara, H., Kahn, M. L., Farese, R. V. & Coughlin, S. R. Role of the thrombin receptor in development and evidence for a second receptor. Nature 381, 516–519 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Ishihara, H. et al. Protease-activated receptor 3 is a second thrombin receptor in humans. Nature 386, 502–506 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Novak, E. K. et al. Cocoa: a new mouse model for platelet storage pool deficiency. Br. J. Haematol. 69, 371–378 (1988).

    Article  CAS  PubMed  Google Scholar 

  12. Vu, T.-K. H., Wheaton, V. I., Hung, D. T. & Coughlin, S. R. Domains specifying thrombin-receptor interaction. Nature 353, 674–677 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Chen, J., Ishii, M., Wang, L., Ishii, K. & Coughlin, S. R. Thrombin receptor activation: confirmation of the intramolecular tethered liganding hypothesis and discovery of an alternative intermolecular liganding mode. J. Biol. Chem. 269, 16041–16045 (1994).

    CAS  PubMed  Google Scholar 

  14. Zhong, C., Hayzer, D. J., Corson, M. A. & Runge, M. S. Molecular cloning of the rat vascular smooth muscle thrombin receptor. Evidence for in vitro regulation by basic fibroblast growth factor. J. Biol. Chem. 267, 16975–16979 (1992).

    CAS  PubMed  Google Scholar 

  15. Ishii, K., Hein, L., Kobilka, B. & Coughlin, S. R. Kinetics of thrombin receptor cleavage on intact cells: relation to signalling. J. Biol. Chem. 268, 9780–9786 (1993).

    CAS  PubMed  Google Scholar 

  16. Kettner, C. & Shaw, E. D-phe-pro-argCH2Cl: a selective affinity label for thrombin. Thromb. Res. 14, 969–973 (1979).

    Article  CAS  PubMed  Google Scholar 

  17. Shuman, M., Botney, M. & Fenton, J. I. Thrombin-induced platelet secretion. J. Clin. Invest. 63, 1211–1218 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodwin, C. A. et al. Thrombin receptor activating peptide does not stimulate platelet procoagulant activity. Biochem. Biophys. Res. Commun. 202, 321–327 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Kramer, R. M. et al. Differential activation of cytosolic phospholipase A2 (cPLA2) by thrombin and thrombin receptor agonist peptide in human platelets. Evidence for activation of cPLA2 independent of the mitogen-activated protein kinases ERK1/2. J. Biol. Chem. 270, 14816–14823 (1995).

    Article  CAS  PubMed  Google Scholar 

  20. Henriksen, R. A., Samokhin, G. P. & Tracy, P. B. Thrombin-induced thromboxane synthesis by human platelets. Properties of anion binding exosite I-independent receptor. Arterioscler. Thromb. Vasc. Biol. 17, 3519–3526 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Mortensen, R. in Current Protocols in Molecular Biology (ed. Ausubel, F. M.) 9.16.1 (Wiley, New York, (1993)).

    Google Scholar 

  22. Meiner, V. L. et al. Disruption of the acyl-CoA:cholesterol acyltransferase gene in mice: evidence suggesting multiple cholesterol esterification enzymes in mammals. Proc. Natl Acad. Sci. USA 93, 14041–14046 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ishihara, H., Zeng, D., Connolly, A. J., Tam, C. & Coughlin, S. R. Antibodies to protease-activated receptor 3 inhibit activation of mouse platelets by thrombin. Blood 91, 4152–4157 (1998).

    CAS  PubMed  Google Scholar 

  24. Williams, J. A., McChesney, D. J., Calayag, M. C., Lingappa, V. R. & Logsdon, C. D. Expression of receptors for cholecystokinin and other Ca2+-mobilizing hormones in Xenopus oocytes. Proc. Natl Acad. Sci. USA 85, 4939–4943 (1988).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Capecchi, M. R. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Liu, L., Vu, T.-K. H., Esmon, C. T. & Coughlin, S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J. Biol. Chem. 266, 16977–16980 (1991).

    CAS  PubMed  Google Scholar 

  27. Mathews, I. I. et al. Crystallographic structures of thrombin complexed with thrombin receptor peptides: existence of expected and novel binding modes. Biochemistry 33, 3266–3279 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Xu, W. F. et al. Cloning and characterization of human protease-activated receptor 4. Proc. Natl Acad. Sci. USA 95, 6642–6646 (1998).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Yu for blastocyst injection and H. Bourne for critical reading of this manuscript and S. E. Millar for assistance with figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaun R. Coughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahn, M., Zheng, YW., Huang, W. et al. A dual thrombin receptor system for platelet activation. Nature 394, 690–694 (1998). https://doi.org/10.1038/29325

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/29325

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing