Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex

Abstract

The assembly of transcriptional regulatory DNA sequences into chromatin plays a fundamental role in modulating gene expression1,2. The promoter of the mouse mammary-tumour virus (MMTV) is packaged into a regular array of nucleosomes when it becomes stably integrated into mammalian chromosomes, and has been used to investigate the relationship between chromatin architecture and transcriptional activation by the hormone-bound glucocorticoid and progesterone receptors3,4. In mammalian cells that express both of these receptors, the progesterone receptor activates transcription from transiently transfected MMTV DNA5,6 but not from organized chromatin templates7. Moreover, the activated progesterone receptor inhibits the chromatin remodelling and consequent transcriptional stimulation that is mediated by the glucocorticoid receptor. Here we investigate the mechanism of this inhibition by characterizing the interaction of the glucocorticoid receptor with transcriptional co-activator and chromatin remodelling protein complexes2,8. We show that when this receptor is prevented from interacting with the hBRG1/BAF chromatin remodelling complex, it can activate transcription from transiently transfected DNA but not from organized chromatin templates. Our results indicate that it may be possible to separate the transcriptional activation and chromatin remodelling activities of proteins that interact with hormone receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antiprogestin inhibits GR-mediated chromatin remodelling and activation of stable but not transiently introduced MMTV templates.
Figure 2: Antiprogestin inhibition of glucocorticoid-dependent association of GR with hBRG1 and BAF 155 is reduced by overexpression of hBRG1.
Figure 3: Glucocorticoid-dependent association of GR with SRC-1/NcoA1, GRIP-1/TIF-2/NcoA2 and CBP/p300 is not inhibited by antiprogestin.

Similar content being viewed by others

References

  1. Grunstein, M. Histone function in transcription. Annu. Rev. Cell. Biol. 6, 643–678 (1990).

    Article  CAS  Google Scholar 

  2. Kingston, R. E., Bunker, C. A. & Imbalzano, A. N. Repression and activation by multiprotein complexes that alter chromatin structure. Genes Dev. 10, 905–920 (1996).

    Article  CAS  Google Scholar 

  3. Richard-Foy, H. & Hager, G. L. Sequence-specific positioning of nucleosomes over the steroid-inducible MMTV promoter. EMBO J. 6, 2321–2328 (1987).

    Article  CAS  Google Scholar 

  4. Archer, T. K.et al. Steroid hormone receptor status defines the MMTV promoter chromatin structure in vivo. J. Ster. Biochem. Mol. Biol. 53, 421–429 (1995).

    Article  CAS  Google Scholar 

  5. Archer, T. K., Lefebvre, P., Wolford, R. G. & Hager, G. L. Transcription factor loading on the MMTV promoter: A bimodal mechanism for promoter activation. Science 255, 1573–1576 (1992).

    Article  ADS  CAS  Google Scholar 

  6. Lee, H.-L. & Archer, T. K. Nucleosome-mediated disruption of transcription factor-chromatin initiation complexes at the mouse mammary tumor virus long terminal repeat in vivo. Mol. Cell. Biol. 14, 32–41 (1994).

    Article  CAS  Google Scholar 

  7. Archer, T. K., Zaniewski, E., Moyer, M. L. & Nordeen, S. K. The differential capacity of glucocorticoids and progestins to alter chromatin structure and induce gene expression in human breast cancer cells. Mol. Endocr. 8, 1154–1162 (1994).

    CAS  Google Scholar 

  8. Glass, C. K., Rose, D. W. & Rosenfeld, M. G. Nuclear receptor coactivators. Curr. Opin. Cell Biol. 9, 222–232 (1997).

    Article  CAS  Google Scholar 

  9. Mizutani, T., Bhakta, A., Kloosterboer, H. J. & Moudgil, V. K. Novel antiprogestins ORG 31806 and 31710: Interaction with mammalian progesterone receptor and DNA binding of antisteroid receptor complexes. J. Ster. Biochem. Mol. Biol. 42, 695–704 (1992).

    Article  CAS  Google Scholar 

  10. Truss, M.et al. Hormone induces binding of receptors and transcription factors to a rearranged nucleosome on the MMTV promoter in vivo. EMBO J. 14, 1737–1751 (1995).

    Article  CAS  Google Scholar 

  11. Yoshinaga, S. K., Peterson, C. L., Herskowitz, I. & Yamamoto, K. R. Roles of SWI1, SWI2, and SWI3 proteins for transcriptional enhancement by steroid receptors. Science 258, 1598–1604 (1992).

    Article  ADS  CAS  Google Scholar 

  12. Muchardt, C. & Yaniv, M. Ahuman homologue of Saccharomyces cerevisiae SNF2/SW12 and Drosophila brm genes potentiates transcriptional activation by the glucocorticoid receptor. EMBO J. 12, 4279–4290 (1993).

    Article  CAS  Google Scholar 

  13. Östlund Farrangs, A.-K., Blomquist, P., Kwon, H. & Wrange, & Glucocorticoid receptor–glucocorticoid response element binding stimulates nucleosome disruption by the SWI/SNF complex. Mol. Cell. Biol. 17, 895–905 (1997).

    Article  Google Scholar 

  14. Wang, W.et al. Diversity and specialization of mammalian SWI/SNF complexes. Genes Dev. 10, 2117–2130 (1996).

    Article  CAS  Google Scholar 

  15. Horwitz, K. B.et al. Nuclear receptor coactivators and corepressors. Mol. Endocr. 10, 1167–1177 (1996).

    CAS  Google Scholar 

  16. Kamei, Y.et al. ACBP integrator complex mediates transcriptional activation and AP-1 inhibition by nuclear receptors. Cell 85, 403–414 (1996).

    Article  CAS  Google Scholar 

  17. Oñate, S. A., Tsai, S. Y., Tsai, M.-J. & O'Malley, B. W. Sequence and characterization of a coactivator for the steroid hormone receptor superfamily. Science 270, 1354–1357 (1995).

    Article  ADS  Google Scholar 

  18. Voegel, J. J.et al. TIF2, a 160 kDa transcriptional mediator for the ligand-dependent activation function AF-2 of nuclear receptors. EMBO J. 15, 3667–3675 (1996).

    Article  CAS  Google Scholar 

  19. Ogryzko, V. V.et al. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 87, 953–959 (1996).

    Article  CAS  Google Scholar 

  20. Bannister, A. J. & Kouzarides, T. The CBP co-activator is a histone acetyltransferase. Nature 384, 641–643 (1996).

    Article  ADS  CAS  Google Scholar 

  21. Bresnick, E. H.et al. Glucocorticoid receptor-dependent disruption of a specific nucleosome on the mouse mammary tumor virus promoter is prevented by sodium butyrate. Proc. Natl Acad. Sci. USA 87, 3977–3981 (1990).

    Article  ADS  CAS  Google Scholar 

  22. McKnight, G. S., Hager, L. & Palmiter, R. D. Butyrate and related inhibitors of histone deacetylation block the induction of egg white genes by steroid hormones. Cell 22, 469–477 (1980).

    Article  CAS  Google Scholar 

  23. Torchia, J.et al. The transcriptional co-activator p/CIP binds CBP and meditates nuclear-receptor function. Nature 387, 677–684 (1997).

    Article  ADS  CAS  Google Scholar 

  24. Smith, C. L., Oñate, S. A., Tsai, M.-J. & O'Malley, B. W. REB binding protein acts synergistically with steroid receptor coactivator-1 to enhance steroid receptor-dependent transcription. Proc. Natl Acad. Sci. USA 93, 8884–8888 (1996).

    Article  ADS  CAS  Google Scholar 

  25. Chakravarti, D.et al. Role of CBP/P300 in nuclear receptor signalling. Nature 383, 99–103 (1996).

    Article  ADS  CAS  Google Scholar 

  26. Hong, H.et al. GRIP1, a novel mouse protein that serves as a transcriptional coactivator in yeast for the hormone binding domains of steroid receptors. Proc. Natl Acad. Sci. USA 93, 4948–4952 (1996).

    Article  ADS  CAS  Google Scholar 

  27. Wu, C. Chromatin remodeling and the control of gene expression. J. Biol. Chem. 272, 28171–28174 (1997).

    Article  CAS  Google Scholar 

  28. Dunaief, J. L.et al. The retinoblastoma protein and BRG1 form a complex and cooperate to induce cell cycle arrest. Cell 79, 119–130 (1994).

    Article  CAS  Google Scholar 

  29. Gametchu, B. & Harrison, R. W. Characterization of a monoclonal antibody ot the rat liver glucocorticoid receptor. Endocrinology 114, 274–279 (1984).

    Article  CAS  Google Scholar 

  30. Estes, P. A.et al. Immunological analysis of progesterone receptors in human breast cancer. Biochemistry 26, 6250–6262 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Imbalzano, G. Schnitzler and R. Kingston for hBRG1 antibody; B.Gametchu for the BUGR2 antibody; D. Edwards for the B-30 antibody; J. Torchia and M. Rosenfeld for NcoA1 and NcoA2 antibodies; W. Wang and G. Crabtree for BAFs 60a, 155 and 175 antibodies; S. Goff and B. Strober for hBRG1 plasmids; G. DiMattia and members of our laboratory for critically reading the manuscript; and D. Power for its preparation. This work was supported by grants to T.K.A. from the National Cancer Institute of Canada (NCIC) and the Medical Research Council (MRC) of Canada; T.K.A. is an NCIC Scientist and C.J.F. holds an MRC studentship award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor K. Archer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fryer, C., Archer, T. Chromatin remodelling by the glucocorticoid receptor requires the BRG1 complex. Nature 393, 88–91 (1998). https://doi.org/10.1038/30032

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/30032

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing