Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain

Abstract

In the vascular system, endothelium-derived relaxing factor (EDRF) is the name of the local hormone released from endothelial cells in response to vasodilators such as acetylcholine, bradykinin and histamine. It diffuses into underlying smooth muscle where it causes relaxation by activating guanylate cyclase, so producing a rise in cyclic GMP levels1–3. It has been known for many years that in the central nervous system (CNS) the excitatory neurotran-smitter glutamate can elicit large increases in cGMP levels, particularly in the cerebellum where the turnover rate of cGMP is low4. Recent evidence indicates that cell-cell interactions are involved in this response5. We report here that by acting on NMDA (N-methyl-D-aspartate) receptors on cerebellar cells, glutamate induces the release of a diffusible messenger with strikingly similar properties to EDRF. This messenger is released in a Ca2+-depen-dent manner and its activity accounts for the cGMP responses that take place following NMDA receptor activation. In the CNS, EDRF may link activation of postsynaptic NMDA receptors to functional modifications in neighbouring presynaptic terminals and glial cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Furchgott, R. F. & Zawadski, J. V. Nature 288, 373–376 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Vanhoutte, P. M., Rubanyi, G. M., Miller, V. M. & Houston, D. S. A. Rev. Physiol. 48, 307–320 (1986).

    Article  CAS  Google Scholar 

  3. Waldman, S. A. & Murad, F. Pharmac. Rev. 39, 163–196 (1987).

    CAS  Google Scholar 

  4. Drummond, G. I. Adv. Cyclic Nucleotide Res. 15, 373–494 (1983).

    CAS  Google Scholar 

  5. Garthwaite, J. & Garthwaite, G. J. Neurochem. 48, 29–39 (1987).

    Article  CAS  Google Scholar 

  6. Garthwaite, J. Br. J. Pharmac. 85, 297–307 (1985).

    Article  CAS  Google Scholar 

  7. Rubanyi, G. M. & Vanhoutte, P. M. Am. J. Physiol. 250, H815–H821 (1986).

    Article  CAS  Google Scholar 

  8. Gryglewski, R. J., Palmer, R. M. J. & Moncada, S. Nature 320, 454–456 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Palmer, R. M. J., Ferrige, A. G. & Moncada, S. Nature 327, 524–526 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Ignarro, L. J., Byrns, R. E., Buga, G. M. & Wood, K. S. Circulation Res. 61, 866–879 (1987).

    Article  CAS  Google Scholar 

  11. Martin, W., Villani, G. M., Jothianandan, D. & Furchgott, R. F. J. Pharmac. exp. Ther. 232, 708–716 (1985).

    CAS  Google Scholar 

  12. Gruetter, C. A., Kadowitz, P. J. & Ignarro, L. J. Can. J. Physiol. Pharmac. 59, 150–156 (1981).

    Article  CAS  Google Scholar 

  13. Forstermann, U., Trogisch, G. & Busse, R. Eur. J. Pharmac. 106, 639–643 (1985).

    Article  Google Scholar 

  14. Bunn, S. J., Garthwaite, J. & Wilkin, G. P. Neurochem. Int. 8, 179–185 (1986).

    Article  CAS  Google Scholar 

  15. Krnjevic, K. & Van Meter, W. G. Can. J. Physiol. Pharmac. 54, 416–421 (1976).

    Article  CAS  Google Scholar 

  16. Nakane, M. & Deguchi, T. Biochim. biophys. Acta 525, 275–285 (1978).

    Article  CAS  Google Scholar 

  17. Collingridge, G. L. & Bliss, T. V. P. Trends Neurosci. 10, 288–293 (1987).

    Article  CAS  Google Scholar 

  18. Peach, M. J., Singer, H. A., Izzo, N. J. Jr & Loeb, A. L. Am. J. Cardiol. 59, 35A–43A (1987).

    Article  CAS  Google Scholar 

  19. MacDermott, A. B., Mayer, M. L., Westbrook, G. L., Smith, S. J. & Barker, J. L. Nature 321, 519–522 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Garthwaite, J. Neuroscience 7, 2491–2497 (1982).

    Article  CAS  Google Scholar 

  21. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Palmer, R. M. J., Ashton, D. S. & Moncada, S. Nature 333, 664–666 (1988).

    Article  ADS  CAS  Google Scholar 

  23. Deguchi, T. & Yoshioka, M. J. biol. Chem. 257, 10147–10151 (1982).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garthwaite, J., Charles, S. & Chess-Williams, R. Endothelium-derived relaxing factor release on activation of NMDA receptors suggests role as intercellular messenger in the brain. Nature 336, 385–388 (1988). https://doi.org/10.1038/336385a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336385a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing