Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel

Abstract

IN cardiac muscle, where Ca2+ influx across the sarcolemma is essential for contraction, the dihydropyridine (DHP)-sensitive L-type calcium channel1 represents the major entry pathway of extracellular Ca2+. We have previously elucidated the primary structure of the rabbit skeletal muscle DHP receptor by cloning and sequencing the complementary DNA2. An expression plasmid carrying this cDNA, microinjected into cultured skeletal muscle cells from mice with muscular dysgenesis, has been shown to restore both excitation-contraction coupling and slow calcium current missing from these cells, so that a dual role for the DHP receptor in skeletal muscle transverse tubules is suggested3. We report here the complete amino-acid sequence of the rabbit cardiac DHP receptor, deduced from the cDNA sequence. We also show that messenger RNA derived from the cardiac DHP receptor cDNA is sufficient to direct the formation of a functional DHP-sensitive calcium channel in Xenopus oocytes. Furthermore, higher calcium-channel activity is observed when mRNA specific for the polypeptide of relative molecular mass 140,000 (α2-subunit)4–6 associated with the skeletal muscle DHP receptor is co-injected.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Bean, B. P. A. Rev. Physiol. 51, 367–384 (1989).

    Article  CAS  Google Scholar 

  2. Tanabe, T. et al. Nature 328, 313–318 (1987).

    Article  CAS  ADS  Google Scholar 

  3. Tanabe, T., Beam, K. G., Powell, J. A. & Numa, S. Nature 336, 134–139 (1988).

    Article  CAS  ADS  Google Scholar 

  4. Catterall, W. A. Science 242, 50–61 (1988).

    Article  CAS  ADS  Google Scholar 

  5. Campbell, K. P., Leung, A. T. & Sharp, A. H. Trends Neurosci. 11, 425–430 (1988).

    Article  CAS  Google Scholar 

  6. Hosey, M. M. & Lazdunski, M. J. Membrane Biol. 104, 81–105 (1988).

    Article  CAS  Google Scholar 

  7. Noda, M. et al. Nature 312, 121–127 (1984).

    Article  CAS  ADS  Google Scholar 

  8. Noda, M. et al. Nature 320, 188–192 (1986).

    Article  CAS  ADS  Google Scholar 

  9. Kayano, T., Noda, M., Flockerzi, V., Takahashi, H. & Numa, S. FEBS Lett. 228, 187–194 (1988).

    Article  CAS  Google Scholar 

  10. Salkoff, L. et al. Science 237, 744–749 (1987).

    Article  CAS  ADS  Google Scholar 

  11. Hubbard, S. C. & Ivatt, R. J. A. Rev. Biochem. 50, 555–583 (1981).

    Article  CAS  Google Scholar 

  12. Krebs, E. G. & Beavo, J. A. A. Rev. Biochem. 48, 923–959 (1979).

    Article  CAS  Google Scholar 

  13. Dascal, N., Snutch, T. P., Lübbert, H., Davidson, N. & Lester, H. A. Science 231, 1147–1150 (1986).

    Article  CAS  ADS  Google Scholar 

  14. Noda, M. et al. Nature 322, 826–828 (1986).

    Article  CAS  ADS  Google Scholar 

  15. Stühmer, W., Methfessel, C., Sakmann, B., Noda, M. & Numa, S. Eur. Biophys. J. 14, 131–138 (1987).

    Article  Google Scholar 

  16. Suzuki, H. et al. FEBS Lett. 228, 195–200 (1988).

    Article  CAS  Google Scholar 

  17. Auld, V. J. et al. Neuron 1, 449–461 (1988).

    Article  CAS  Google Scholar 

  18. Timpe, L. C. et al. Nature 331, 143–145 (1988).

    Article  CAS  ADS  Google Scholar 

  19. Stühmer, W. et al. FEBS Lett. 242, 199–206 (1988).

    Article  Google Scholar 

  20. Noguchi, S., Mishina, M., Kawamura, M. & Numa, S. FEBS Lett. 225, 27–32 (1987).

    Article  CAS  Google Scholar 

  21. Leberer, E. et al. J. biol. Chem. 264, 3484–3493 (1989).

    CAS  PubMed  Google Scholar 

  22. Noda, M. et al. Nature 295, 202–206 (1982).

    Article  CAS  ADS  Google Scholar 

  23. Henikoff, S. Meth. Enzym. 155, 156–165 (1987).

    Article  CAS  Google Scholar 

  24. Sanger, F., Nicklen, S. & Coulson, A. R. Proc. natn. Acad. Sci. U.S.A. 74, 5463–5467 (1977).

    Article  CAS  ADS  Google Scholar 

  25. Maxam, A. M. & Gilbert, W. Meth. Enzym. 65, 499–560 (1980).

    Article  CAS  Google Scholar 

  26. Mishina, M. et al. Nature 321, 406–411 (1986).

    Article  CAS  ADS  Google Scholar 

  27. Mishina, M. et al. Nature 307, 604–608 (1984).

    Article  CAS  ADS  Google Scholar 

  28. Fukuda, K. et al. Nature 327, 623–625 (1987).

    Article  CAS  ADS  Google Scholar 

  29. Ellis, S. B. et al. Science 241, 1661–1664 (1988).

    Article  CAS  ADS  Google Scholar 

  30. Methfessel, C. et al. Pflügers Arch. ges. Physiol. 407, 577–588 (1986).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikami, A., Imoto, K., Tanabe, T. et al. Primary structure and functional expression of the cardiac dihydropyridine-sensitive calcium channel. Nature 340, 230–233 (1989). https://doi.org/10.1038/340230a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/340230a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing