Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53 is associated with cellular microtubules and is transported to the nucleus by dynein

Abstract

Here we show that p53 protein is physically associated with tubulin in vivo and in vitro, and that it localizes to cellular microtubules. Treatment with vincristine or paclitaxel before DNA-damage or before leptomycin B treatment reduces nuclear accumulation of p53 and expression of mdm2 and p21. Overexpression of dynamitin or microinjection of anti-dynein antibody before DNA damage abrogates nuclear accumulation of p53. Our results indicate that transport of p53 along microtubules is dynein-dependent. The first 25 amino acids of p53 contain the residues that are essential for binding to microtubules. We propose that functional microtubules and the dynein motor protein participate in transport of p53 and facilitate its accumulation in the nucleus after DNA damage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: p53 co-immunoprecipitates with tubulin.
Figure 2: Wild-type and mutant p53 bind preferentially to polymerized tubulin.
Figure 3: Co-localization of p53 with cellular microtubules.
Figure 4: Microtubule-perturbing drugs impair nuclear accumulation of p53 and induction of mdm2 and p21 after DNA damage.
Figure 5: Pretreatment with paclitaxel or vincristine abrogates the effect of Leptomycin B on p53.
Figure 6: The microtubule–motor complex dynein/dynactin is involved in transport of p53.
Figure 7: Purified p53 binds to purified microtubules in vitro.
Figure 8: The N terminus of p53 is important for microtubule binding.

Similar content being viewed by others

References

  1. Ko, L. J. & Prives, C. p53: puzzle and paradigm. Genes Dev. 10, 1054–1072 (1996).

    Article  CAS  Google Scholar 

  2. Levine, A. J. p53, the cellular gatekeeper for growth and division. Cell 88, 323–331 (1997).

    Article  CAS  Google Scholar 

  3. Vogelstein, B. & Kinzler, K. W. p53 function and dysfunction . Cell 70, 523–536 (1992).

    Article  CAS  Google Scholar 

  4. Cross, S. M. et al. A p53-dependent mouse spindle checkpoint. Science 267, 1353–1356 (1995).

    Article  CAS  Google Scholar 

  5. Fukasawa, K., Choi, T., Kuriyama, R., Rulong, S. & Vande, W. G. Abnormal centrosome amplification in the absence of p53. Science 271, 1744– 1747 (1996).

    Article  CAS  Google Scholar 

  6. Kastan, M. B., Onyekwere, O., Sidransky, D., Vogelstein, B. & Craig, R. W. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51 , 6304–6311 (1991).

    CAS  Google Scholar 

  7. Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15–16 (1992).

    Article  CAS  Google Scholar 

  8. Prives, C. Signaling to p53: breaking the MDM2–p53 circuit. Cell 95, 5–8 (1998).

    Article  CAS  Google Scholar 

  9. el-Deiry, W. S. et al. WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817–825 (1993).

    Article  CAS  Google Scholar 

  10. Miyashita, T. & Reed, J. C. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293–299 (1995).

    Article  CAS  Google Scholar 

  11. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W. & Vogelstein, B. A model for p53-induced apoptosis. Nature 389, 300–305 (1997).

    Article  CAS  Google Scholar 

  12. Hollstein, M., Sidransky, D., Vogelstein, B. & Harris, C. C. p53 mutations in human cancers. Science 253, 49–53 (1991).

    Article  CAS  Google Scholar 

  13. Levine, A. J., Momand, J. & Finlay, C. A. The p53 tumour suppressor gene. Nature 351, 453–456 (1991).

    Article  CAS  Google Scholar 

  14. Momand, J., Zambetti, G. P., Olson, D. C., George, D. & Levine, A. J. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation . Cell 69, 1237–1245 (1992).

    Article  CAS  Google Scholar 

  15. Oliner, J. D. et al. Oncoprotein MDM2 conceals the activation domain of tumour suppressor p53. Nature 362, 857– 860 (1993).

    Article  CAS  Google Scholar 

  16. Scheffner, M., Werness, B. A., Huibregtse, J. M., Levine, A. J. & Howley, P. M. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63, 1129–1136 (1990).

    Article  CAS  Google Scholar 

  17. Moll, U. M. et al. Cytoplasmic sequestration of wild-type p53 protein impairs the G1 checkpoint after DNA damage. Mol. Cell. Biol. 16, 1126–1137 (1996).

    Article  CAS  Google Scholar 

  18. Moll, U. M., Riou, G. & Levine, A. J. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl Acad. Sci. USA 89, 7262–7266 (1992).

    Article  CAS  Google Scholar 

  19. Schlamp, C. L., Poulsen, G. L., Nork, T. M. & Nickells, R. W. Nuclear exclusion of wild-type p53 in immortalized human retinoblastoma cells . J. Natl Cancer Inst. 89, 1530– 1536 (1997).

    Article  CAS  Google Scholar 

  20. Bosari, S. et al. Cytoplasmic accumulation of p53 protein: an independent prognostic indicator in colorectal adenocarcinomas. J. Natl Cancer Inst. 86, 681–687 (1994).

    Article  CAS  Google Scholar 

  21. Sun, X. F. et al. Prognostic significance of cytoplasmic p53 oncoprotein in colorectal adenocarcinoma. Lancet 340, 1369 –1373 (1992).

    Article  CAS  Google Scholar 

  22. Freedman, D. A. & Levine, A. J. Nuclear export is required for degradation of endogenous p53 by MDM2 and human papillomavirus E6. Mol. Cell Biol. 18, 7288– 7293 (1998).

    Article  CAS  Google Scholar 

  23. Giannakakou, P. et al. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. J. Biol. Chem. 272, 17118–17125 (1997).

    Article  CAS  Google Scholar 

  24. Giannakakou, P. et al. Paclitaxel selects for mutant or pseudo-null p53 in drug resistance associated with tubulin mutations in human cancer. Oncogene 19, 3078–3085 (2000).

    Article  CAS  Google Scholar 

  25. Hyman, A. A. & Karsenti, E. Morphogenetic properties of microtubules and mitotic spindle assembly. Cell 84, 401 –410 (1996).

    Article  CAS  Google Scholar 

  26. Jordan, M. A. & Wilson, L. Microtubules and actin filaments: dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. 10, 123–130 (1998).

    Article  CAS  Google Scholar 

  27. Gundersen, G. G. & Cook, T. A. Microtubules and signal transduction. Curr. Opin. Cell Biol. 11, 81–94 (1999).

    Article  CAS  Google Scholar 

  28. Stommel, J. M. et al. A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking . EMBO J. 18, 1660–1672 (1999).

    Article  CAS  Google Scholar 

  29. Goodson, H. V., Valetti, C. & Kreis, T. E. Motors and membrane traffic. Curr. Opin. Cell Biol. 9, 18–28 (1997).

    Article  CAS  Google Scholar 

  30. Okada, Y. & Hirokawa, N. A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283, 1152–1157 (1999).

    Article  CAS  Google Scholar 

  31. Hirokawa, N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport . Science 279, 519–526 (1998).

    Article  CAS  Google Scholar 

  32. Burkhardt, J. K., Echeverri, C. J., Nilsson, T. & Vallee, R. B. Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J. Cell Biol. 139, 469–484 (1997).

    Article  CAS  Google Scholar 

  33. Klotzke, O., Etzrodt, D., Hohenberg, H., Bohn, W. & Deppert, W. Cytoplasmic retention of mutant tsp53 is dependent on an intermediate filament protein (vimentin) scaffold . Oncogene 16, 3423–3434 (1998).

    Article  Google Scholar 

  34. Jimenez, G. S., Khan, S. H., Stommel, J. M. & Wahl, G. M. p53 regulation by post-translational modification and nuclear retention in response to diverse stresses. Oncogene 18, 7656–7665 (1999).

    Article  CAS  Google Scholar 

  35. Maxwell, S. A. et al. Simian virus 40 large T antigen and p53 are microtubule-associated proteins in transformed cells. Cell Growth Differ. 2, 115–127 (1991).

    CAS  PubMed  Google Scholar 

  36. Blagosklonny, M. V. et al. Taxol induction of p21WAF1 and p53 requires c-raf-1. Cancer Res. 55, 4623–4626 (1995).

    CAS  PubMed  Google Scholar 

  37. Kapeller, R., Toker, A., Cantley, L. C. & Carpenter, C. L. Phosphoinositide 3-kinase binds constitutively to alpha/beta-tubulin and binds to gamma-tubulin in response to insulin. J. Biol. Chem. 270, 25985–25991 (1995).

    Article  CAS  Google Scholar 

  38. Magnelli, L. The old and the new in p53 functional regulation. Biochem. Mol. Med. 62, 3–10 (1997).

    Article  CAS  Google Scholar 

  39. Chai, Y. L. et al. The second BRCT domain of BRCA1 proteins interacts with p53 and stimulates transcription from the p21WAF1/CIP1 promoter. Oncogene 18, 263–268 (1999).

    Article  CAS  Google Scholar 

  40. Ouchi, T., Monteiro, A. N., August, A., Aaronson, S. A. & Hanafusa, H. BRCA1 regulates p53-dependent gene expression. Proc. Natl Acad. Sci. USA 95, 2302–2306 (1998).

    Article  CAS  Google Scholar 

  41. Hsu, L. C. & White, R. L. BRCA1 is associated with the centrosome during mitosis. Proc. Natl Acad. Sci. USA 95, 12983–12988 (1998).

    Article  CAS  Google Scholar 

  42. Sackett, D. L., Knipling, L. & Wolff, J. Isolation of microtubule protein from mammalian brain frozen for extended periods of time. Protein Expr. Purif. 2, 390–393 (1991).

    Article  CAS  Google Scholar 

  43. Takenaka, I., Morin, F., Seizinger, B. R. & Kley, N. Regulation of the sequence-specific DNA binding function of p53 by protein kinase C and protein phosphatases J. Biol. Chem. 270, 5405–5411 (1995).

    Article  CAS  Google Scholar 

  44. Wolff, J., Sackett, D. L. & Knipling, L. Cation selective promotion of tubulin polymerization by alkali metal chlorides. Protein Sci. 5, 2020–2028 (1996).

    Article  CAS  Google Scholar 

  45. Balczon, R., Varden, C. E. & Schroer, T. A. Role for microtubules in centrosome doubling in Chinese hamster ovary cells. Cell Motil. Cytoskeleton 42, 60–72 (1999).

    Article  CAS  Google Scholar 

  46. Horton, R. M., Cai, Z. L., Ho, S. N. & Pease, L. R. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction . Biotechniques 8, 528– 531 (1990).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Gray and U. Roongta for help with expression and purification of His–p53 fusion protein. We are grateful to M. Clarke and C. Harris for providing full-length wild-type p53 and p53 (Δ342–end) plasmids, respectively. We also thank R. Vallee for providing the dynamitin plasmid, and L. Neckers for providing Leptomycin B. We are indebted to R. Klausner for insightful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paraskevi Giannakakou.

Additional information

Correspondence and requests for materials should be addressed to P.G.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giannakakou, P., Sackett, D., Ward, Y. et al. p53 is associated with cellular microtubules and is transported to the nucleus by dynein. Nat Cell Biol 2, 709–717 (2000). https://doi.org/10.1038/35036335

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35036335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing