Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor

Abstract

The metabotropic glutamate receptors (mGluRs) are key receptors in the modulation of excitatory synaptic transmission in the central nervous system. Here we have determined three different crystal structures of the extracellular ligand-binding region of mGluR1—in a complex with glutamate and in two unliganded forms. They all showed disulphide-linked homodimers, whose ‘active’ and ‘resting’ conformations are modulated through the dimeric interface by a packed α-helical structure. The bi-lobed protomer architectures flexibly change their domain arrangements to form an ‘open’ or ‘closed’ conformation. The structures imply that glutamate binding stabilizes both the ‘active’ dimer and the ‘closed’ protomer in dynamic equilibrium. Movements of the four domains in the dimer are likely to affect the separation of the transmembrane and intracellular regions, and thereby activate the receptor. This scheme in the initial receptor activation could be applied generally to G-protein-coupled neurotransmitter receptors that possess extracellular ligand-binding sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structures of mGluR1 in the liganded and unliganded states.
Figure 2: Secondary structure assignment (PROCHECK37) and multiple sequence alignments.
Figure 3: Representation of glutamate binding.
Figure 4: Relocation of dimer interfaces.
Figure 5: Diagram of the two states of the m1-LBR in dynamic equilibrium.

Similar content being viewed by others

References

  1. Nakanishi, S. & Masu, M. Molecular diversity and functions of glutamate receptors. Annu. Rev. Biophys. Biomol. Struct. 23, 319–348 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Hollmann, M. & Heinemann, S. Cloned glutamate receptors. Annu. Rev. Neurosci. 17, 31–108 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Nakanishi, S. Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Brown, E. M. et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 366, 575–580 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Herrada, G. & Dulac, C. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90, 763– 773 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Matsunami, H. & Buck, L. B. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90, 775–784 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. O'Hara, P. J. et al. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 11, 41–52 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Kaupmann, K. et al. Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386, 239–246 (1997).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Takahashi, K., Tsuchida, K., Tanabe, Y., Masu, M. & Nakanishi, S. Role of the large extracellular domain of metabotropic glutamate receptors in agonist selectivity determination. J. Biol. Chem. 268, 19341–19345 ( 1993).

    CAS  PubMed  Google Scholar 

  10. Costantino, G., Macchiarulo A. & Pellicciari, R. Modeling of amino-terminal domains of group I metabotropic glutamate receptors: structural motifs affecting ligand selectivity. J. Med. Chem. 42, 5390–5401 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Sack, J. S., Saper, M. A. & Quiocho, F. A. Periplasmic binding protein structure and function. Refined X-ray structures of the leucine/isoleucine/valine-binding protein and its complex with leucine. J. Mol. Biol. 206, 171–191 (1989).

    Article  CAS  PubMed  Google Scholar 

  12. Okamoto, T. et al. Expression and purification of the extracellular ligand binding region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 273, 13089–13096 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  13. Han, G. -M. & Hampson, D. R. Ligand binding to the amino-terminal domain of the mGluR4 subtype of metabotropic glutamate receptor. J. Biol. Chem. 274, 10008–10013 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Goldsmith, P. K. et al. Expression, purification, and biochemical characterization of the amino-terminal extracellular domain of the human calcium receptor. J. Biol. Chem. 274, 11303– 11309 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Tsuji, Y. et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 275, 28144–28151 ( 2000)

    CAS  PubMed  Google Scholar 

  16. Romano, C., Yang, W.-L. & O'Malley, K. L. Metabotropic glutamate receptor 5 is a disulphide-linked dimer. J. Biol. Chem. 271, 28612– 28616 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Armstrong, N., Sun, Y., Chen, G.-Q. & Gouaux, E. Structure of a glutamate-receptor ligand-binding core in complex with kainate. Nature 395, 913–917 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Oh, B.-H. et al. Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J. Biol. Chem. 268 , 11348–11355 (1993).

    CAS  PubMed  Google Scholar 

  19. Sugiyama, S. et al. Crystal structure of PotD, the primary receptor of the polyamine transport system in Escherichia coli. J. Biol. Chem. 271, 9519–9525 (1996).

    Article  CAS  PubMed  Google Scholar 

  20. Vassylyev, D. G., Tomitori, H., Kashiwagi, K., Morikawa, K. & Igarashi, K. Crystal structure and mutational analysis of the Escherichia coli putrescine receptor. J. Biol. Chem. 273, 17604–17609 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, Y.-J., Rose, J., Wang, B.-C. & Hsiao, C.-D. The structure of glutamine-binding protein complexed with glutamine at 1.94 Å resolution: comparisons with other amino acid binding proteins. J. Mol. Biol. 278, 219–229 ( 1998).

    Article  CAS  PubMed  Google Scholar 

  22. Kubo, Y., Miyashita, T. & Murata, Y. Structural basis for a Ca2+-sensing function of the metabotropic glutamate receptors. Science 279 , 1722–1725 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Gallivan, J. P. & Dougherty, D. A. Cation–π interactions in structural biology. Proc. Natl. Acad. Sci. USA 96, 9459–9464 ( 1999).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hampson, D. R. et al. Probing the ligand-binding domain of the mGluR4 subtype of metabotropic glutamate receptor. J. Biol. Chem. 274 , 33488–33495 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Chothia, C., Levitt, M. & Richardson, D. Structure of proteins: packing of α-helices and pleated sheets. Proc. Natl. Acad. Sci. USA 74, 4130–4134 (1977).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Khorana, H. G. Rhodopsin, photoreceptor of the rod cell: an emerging pattern for structure and function. J. Biol. Chem. 267, 1– 4 (1992).

    CAS  PubMed  Google Scholar 

  27. Strader, C. D., Fong, T.-M., Tota, M. R., Underwood, D. & Dixon, R. A. F. Structure and function of G protein-coupled receptors. Annu. Rev. Biochem. 63, 101– 132, (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Aritomi, M. et al. Atomic structure of the GCSF-receptor complex showing a new cytokine-receptor recognition scheme. Nature 401, 713–717 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Deller, M. C. & Jones, E. Y. Cell surface receptors. Curr. Opin. Struct. Biol. 10, 213– 219 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Livnah, O. et al. Crystallographic evidence for preformed dimers of erythropoietin receptor before ligand activation. Science 283, 987–990 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Remy, I., Wilson, I. A. & Minchnick, S. W. Erythropoietin receptor activation by a ligand-induced conformation change. Science 283, 990– 993 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Jones, K. A. et al. GABAB receptors function as a heteromeric assembly of the subunits GABABR1 and GABABR2. Nature 396, 674–679 ( 1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. White, J. H. et al. Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396, 679 –682 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Kaupmann, K. et al. GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683– 687 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 ( 1997).

    Article  CAS  PubMed  Google Scholar 

  36. de La Fortelle, E. & Bricogne, G. Maximum-likelihood heavy-atom parameter refinement for multiple isomorphous replacement and multiwavelength anomalous diffraction methods. Methods Enzymol. 276 , 472–494 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Collaborative Computational Project, Number 4. The CCP4 Suite: programs for protein crystallography. Acta Crystallogr. D 50, 760–763 (1994).

    Article  Google Scholar 

  38. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  PubMed  Google Scholar 

  39. Weik, M. et al. Specific chemical and structural damage to proteins produced by synchrotron radiation. Proc. Natl. Acad. Sci. USA 97, 623–628 (2000).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Masu, M., Tanabe, Y., Tsuchida, K., Shigemoto, R. & Nakanishi, S. Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760– 765 (1991).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Flor, P. J. et al. Molecular cloning, functional expression and pharmacological characterization of the human metabotropic glutamate receptor type 2. Eur. J. Neurosci. 7, 622–629 (1995).

    Article  CAS  PubMed  Google Scholar 

  42. Minakami, R., Katsuki, F., Yamamoto, T., Nakamura, K. & Sugiyama, H. Molecular cloning and the functional expression of two isoforms of human metabotropic glutamate receptor subtype 5. Biochem. Biophys. Res. Commun. 199, 1136 –1143 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Hashimoto, T. et al. The whole nucleotide sequence and chromosomal localization of the gene for human metabotropic glutamate receptor subtype 6. Eur. J. Neurosci. 9, 1226–1235 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Garrett, J. E. et al. Molecular cloning and functional expression of human parathyroid calcium receptor cDNAs. J. Biol. Chem. 270, 12919–12925 (1995).

    Article  CAS  PubMed  Google Scholar 

  45. Nicholls, A., Sharp, K. A. & Honig, B. Protein folding and association: insights from the interfacial and thermodynamic properties of hydrocarbons. Proteins 11, 281–296 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Yagi and Y. Katsuya for use of the facilities at SPring-8, Hyogo, Japan. We also thank T. Tomura and S. Yamamoto for technical assistance; H. Toh and T. Hiroike for their help in bioinformatic analyses; and Y. Shimura, H. Nakamura and A. Pähler for discussions and encouragement. This study is partly supported by a grant from the SPring-8 Joint Research Promotion Scheme of the Japan Science and Technology Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Morikawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kunishima, N., Shimada, Y., Tsuji, Y. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971–977 (2000). https://doi.org/10.1038/35039564

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/35039564

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing