Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Oligomerization of G-protein-coupled transmitter receptors

Key Points

  • Since their biochemical purification in the 1970s and molecular cloning in the late 1980s, G-protein-coupled receptors (GPCRs) have generally been shown as monomeric transmembrane proteins that allosterically interact with heterotrimeric G proteins upon ligand binding. However, the complexity of radio-ligand binding properties of some receptors, combined with indirect biochemical data, provide evidence that GPCRs exist as oligomeric complexes.

  • The observation that receptor mutants can have dominant-negative effect on wild-type receptors, and that receptor function can be rescued by coexpressing receptors inactivated by mutations in distinct domains, implied that GPCRs can function as dimers. Co-immunoprecipitation of differentially tagged receptors provided the first direct biochemical evidence for this; however, GPCRs are very hydrophobic and could form artefactual aggregates resembling dimers. Biophysical approaches such as bioluminescence or fluorescence energy transfer (BRET or FRET) have confirmed that GPCRs exist as dimers in living cells.

  • The metabotropic GABAB receptor illustrates a convincing role for GPCR dimerization. The expression of a functional GABAB receptor at the cell surface depends entirely on heterodimerization between the GABABR1 and GABABR2 isoforms. When these are co-expressed, the heterodimer formed is trafficked at the cell surface as a functional receptor, indicating that dimerization could play a role in both chaperoning and signalling. Additional evidence for a role of dimerization in signal transduction includes the observation that preventing dimer formation abrogates β2-adrenergic receptor signal transduction.

  • Heterodimers can form between other receptor subtypes; for example, between δ- and μ- or κ-opioid receptors, or between receptors for different transmitters; for example, between the dopamine and somatostatin, the angiotensin and bradykinin, and the opioid and adrenergic receptors. Heterodimerization often gives different pharmacological and/or functional properties to the individual receptors, implying a diversity that was not anticipated. Heterodimerization might also be one of the mechanisms underlying cross-talk signalling between receptor systems.

  • Heterodimerization between GPCRs and non-GPCR proteins is also important. For the calcitonin-receptor-like-receptor, stable association with receptor-activity-modifying-proteins (RAMPs) is necessary for cell-surface targeting and determines its pharmacological properties. A direct interaction between a dopamine receptor and the ionotropic GABAA receptor leads to a reciprocal regulation of the two receptors. Heterotypic oligomeric assemblies might be the rule rather than the exception in GPCR-mediated signalling.

  • Relatively little is known about the dynamics and regulation of GPCR dimer formation. One of the most debated issues is whether ligands promote assembly or disassembly of dimers, or whether they bind to preformed dimers and change their conformation.

  • GPCRs might use different dimerization interfaces to associate. For example, hydrophobic packing of transmembrane domains has been suggested for monoamine receptors such as the β2-adrenergic and dopamine receptors. A coiled-coil interaction between the carboxyl-terminal domains causes heterodimerization of GABABR1 and R2, whereas dimers between calcium-sensing and metabotropic glutamate receptors are stabilized by disulphide bonds within their amino-terminal portions. It remains to be determined whether this diversity reflects the existence of multiple sites of interaction for all GPCR dimers, or indicates distinct strategies used by different classes of receptor.

Abstract

Examples of G-protein-coupled receptors that can be biochemically detected in homo- or heteromeric complexes are emerging at an accelerated rate. Biophysical approaches have confirmed the existence of several such complexes in living cells and there is strong evidence to support the idea that dimerization is important in different aspects of receptor biogenesis and function. While the existence of G-protein-coupled-receptor homodimers raises fundamental questions about the molecular mechanisms involved in transmitter recognition and signal transduction, the formation of heterodimers raises fascinating combinatorial possibilities that could underlie an unexpected level of pharmacological diversity, and contribute to cross-talk regulation between transmission systems. Because G-protein-coupled receptors are major pharmacological targets, the existence of dimers could have important implications for the development and screening of new drugs. Here, we review the evidence supporting the existence of G-protein-coupled-receptor dimerization and discuss its functional importance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of homo- and heterodimerization in the transport of G-protein-coupled receptors.
Figure 2: Molecular determinants of G-protein-coupled-receptor dimerization.
Figure 3: Alternative three-dimensional models showing dimers of G-protein-coupled receptors.

Similar content being viewed by others

References

  1. Suryanarayana, S., Von Zastrow, M. & Kobilka, B. K. Identification of intramolecular interactions in adrenergic receptors. J. Biol. Chem. 267, 21991–21994 (1992).

    CAS  PubMed  Google Scholar 

  2. Bockaert, J. & Pin, J. P. Molecular tinkering of G protein-coupled receptors: an evolutionary success. EMBO J. 18, 1723–1729 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Crespo, P., Cachero, T. G., Xu, N. & Gutkind, J. S. Dual effect of β-adrenergic receptors on mitogen-activated protein kinase. J. Biol. Chem. 270, 25259–25265 (1995).

    CAS  PubMed  Google Scholar 

  4. Bogoyevitch, M. A. et al. Adrenergic receptor stimulation of the mitogen-activated protein kinase cascade and cardiac hypertrophy. Biochem. J. 314, 115–121 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yamamoto, J., Nagao, M., Kaziro, Y. & Itoh, H. Activation of p38 mitogen-activated protein kinase by signaling through G protein-coupled receptors. Involvement of Gi and Gq/11 subunits. J. Biol. Chem. 272, 27771–27777 (1997).

    Google Scholar 

  6. Williams, N. G., Zhong, H. & Minneman, K. P. Differential coupling of α1-, α2-, and β-adrenergic receptors to mitogen-activated protein kinase pathways and differentiation in transfected PC12 cells. J. Biol. Chem. 273, 24624–24632 (1998).

    CAS  PubMed  Google Scholar 

  7. Gerhardt, C. C., Gros, J., Strosberg, A. D. & Issad, T. Stimulation of the extracellular signal-regulated kinase 1/2 pathway by human β-3 adrenergic receptor: new pharmacological profile and mechanism of activation . Mol. Pharmacol. 55, 255– 262 (1999).

    CAS  PubMed  Google Scholar 

  8. Soeder, K. J. et al. The β-3 adrenergic receptor activates mitogen-activated protein kinase in adipocytes through a Gi-dependent mechanism. J. Biol. Chem. 274, 12017–12022 (1999).

    CAS  PubMed  Google Scholar 

  9. van Biesen, T. et al. Receptor-tyrosine-kinase- and Gβγ-mediated MAP kinase activation by a common signalling pathway. Nature 376, 781–784 (1995).

    CAS  PubMed  Google Scholar 

  10. Zou, Y. et al. Both Gs and Gi proteins are critically involved in isoproterenol-induced cardiomyocyte hypertrophy. J. Biol. Chem. 274, 9760–9770 ( 1999).

    CAS  PubMed  Google Scholar 

  11. Luttrell, L. M., Della, R. G., van Biesen, T., Luttrell, D. K. & Lefkowitz, R. J. Gβγ subunits mediate Src-dependent phosphorylation of the epidermal growth factor receptor. A scaffold for G protein-coupled receptor-mediated Ras activation. J. Biol. Chem. 272, 4637–4644 ( 1997).

    CAS  PubMed  Google Scholar 

  12. Luttrell, L. et al. Beta-arrestin-dependent formation of β-2-adrenergic receptor-Src protein kinase complexes. Science 283, 655 –661 (1999).

    CAS  PubMed  Google Scholar 

  13. Hall, R. A. et al. The β-2 adrenergic receptor interacts with the Na/H-exchanger regulatory factor to control NA/H exchange. Nature 329, 626–630 (1998).

    Google Scholar 

  14. Mellado, M. et al. The chemokine monocyte chemotactic protein 1 triggers Janus kinase 2 activation and tyrosine phosphorylation of the CCR2B receptor. J. Immunol. 161, 805–813 (1998).

    CAS  PubMed  Google Scholar 

  15. Ali, M. S. et al. Dependence on the motif YIPP for the physical association of Jak2 kinase with the intracellular carboxyl tail of the angiotensin II AT1 receptor. J. Biol. Chem. 272, 23382– 23388 (1997).

    CAS  PubMed  Google Scholar 

  16. Wreggett, K. A. & Wells, J. W. Cooperativity manifest in the binding properties of purified cardiac muscarinic receptors . J. Biol. Chem. 270, 22488– 22499 (1995).

    CAS  PubMed  Google Scholar 

  17. Heldin, C. H. Dimerization of cell surface receptors in signal transduction. Cell 80, 213–223 ( 1995).

    CAS  PubMed  Google Scholar 

  18. Limbird, L. E., Meyts, P. D. & Lefkowitz, R. J. Beta-adrenergic receptors: evidence for negative cooperativity. Biochem. Biophys. Res. Commun. 64, 1160–1168 (1975).

    CAS  PubMed  Google Scholar 

  19. Potter, L. T. et al. Evidence for paired M2 muscarinic receptors. Mol. Pharmacol. 39, 211–221 ( 1991).

    CAS  PubMed  Google Scholar 

  20. Limbird, L. E. & Lefkowitz, R. J. Negative cooperativity among β-adrenergic receptors in frog erythrocyte membranes . J. Biol. Chem. 251, 5007– 5014 (1976).

    CAS  PubMed  Google Scholar 

  21. Mattera, R., Pitts, B. J., Entman, M. L. & Birnbaumer, L. Guanine nucleotide regulation of a mammalian myocardial muscarinic receptor system. Evidence for homo- and heterotropic cooperativity in ligand binding analysed by computer-assisted curve fitting. J. Biol. Chem. 260, 7410–7421 (1985).

    CAS  PubMed  Google Scholar 

  22. Hirschberg, B. T. & Schimerlik, M. I. A kinetic model for oxotremorine M binding to recombinant porcine m2 muscarinic receptors expressed in Chinese hamster ovary cells. J. Biol. Chem. 269, 26127–26135 (1994).

    CAS  PubMed  Google Scholar 

  23. Seeman, P. et al. The cloned dopamine D2 receptor reveals different densities for dopamine receptor antagonist ligands. Implications for human brain positron emission tomography. Eur. J. Pharmacol. 227, 139–146 (1992).

    CAS  PubMed  Google Scholar 

  24. Avissar, S., Amitai, G. & Sokolovsky, M. Oligomeric structure of muscarinic receptors is shown by photoaffinity labeling: subunit assembly may explain high- and low-affinity agonist states. Proc. Natl Acad. Sci. USA 80, 156–159 (1983).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Fraser, C. M. & Venter, J. C. The size of the mammalian lung β-2-adrenergic receptor as determined by target size analysis and immunoaffinity chromatography . Biochem. Biophys. Res. Commun. 109, 21 –29 (1982).

    CAS  PubMed  Google Scholar 

  26. Venter, J. C., Schaber, J. S., U' Prichard, D. C. & Fraser, C. M. Molecular size of the human platelet α2-adrenergic receptor as determined by radiation inactivation. Biochem. Biophys. Res. Commun. 116, 1070–1075 (1983).

    CAS  PubMed  Google Scholar 

  27. Venter, J. C., Horne, P., Eddy, B., Greguski, R. & Fraser, C. M. Alpha 1-adrenergic receptor structure. Mol. Pharmacol. 26, 196–205 (1984).

    CAS  PubMed  Google Scholar 

  28. Crine, P., Aubry, M. & Potier, M. Incorporation of radiolabeled amino acids into protein subunits of the rat leydig cell gonadotropin receptor: application to the study of receptor structure and turnover. Ann. NY Acad. Sci. 438, 224–236 (1984).

    CAS  PubMed  Google Scholar 

  29. Conn, P. M. & Venter, J. C. Radiation inactivation (target size analysis) of the gonadotropin-releasing hormone receptor: evidence for a high molecular weight complex. Endocrinology 116, 1324–1326 (1985).

    CAS  PubMed  Google Scholar 

  30. Bouvier, C. et al. Solubilization and characterization of D2-dopamine receptors in an estrone-induced, prolactin-secreting rat pituitary adenoma. J. Neurochem. 47, 1653–1660 (1986).

    CAS  PubMed  Google Scholar 

  31. Frame, L. T., Yeung, S. M., Venter, J. C. & Cooper, D. M. Target size of the adenosine R1 receptor. Biochem. J. 235, 621–624 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Herberg, J. T., Codina, J., Rich, K. A., Rojas, F. J. & Iyengar, R. The hepatic glucagon receptor. Solubilization, characterization, and development of an affinity adsorption assay for the soluble receptor. J. Biol. Chem. 259, 9285–9294 (1984).

    CAS  PubMed  Google Scholar 

  33. Peterson, G. L., Rosenbaum, L. C., Broderick, D. J. & Schimerlick, M. I. Physical properties of the purified cardiac muscarinic acetylcholine receptor . Biochemistry 25, 3189– 3202 (1986).

    CAS  PubMed  Google Scholar 

  34. Maggio, R., Vogel, Z. & Wess, J. Co-expression studies with mutant muscarinic/adrenergic receptors provide evidence for intermolecular 'cross-talk' between G-protein-linked receptors . Proc. Natl Acad. Sci. USA 90, 3103– 3107 (1993).Using α 2 -adrenergic/M3 muscarinic chimeric proteins, this study documented the occurrence of intermolecular functional complementation indicating that G-protein-coupled receptors can function as dimeric entities.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Monnot, C. et al. Polar residues in the transmembrane domain of the type 1 angiotensin II receptor are required for binding and coupling. Reconstitution of the binding site by co-expression of two deficient mutants. J. Biol. Chem. 271, 1507–1513 ( 1996).

    CAS  PubMed  Google Scholar 

  36. Bai, M., Trivedi, S., Kifor, O., Quinn, S. J. & Brown, E. M. Intermolecular interactions between dimeric calcium-sensing receptor monomers are important for its normal function. Proc. Natl Acad. Sci. USA 96, 2834–2839 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bai, M. et al. Expression and characterization of inactivating and activating mutations in the human Ca2+-sensing receptor. J. Biol. Chem. 271, 19537–19545 (1996).

    CAS  PubMed  Google Scholar 

  38. Zhu, X. & Wess, J. Truncated V2 vasopressin receptors as negative regulators of wild-type V2 receptor function. Biochemistry 37, 15773–15784 ( 1998).

    CAS  PubMed  Google Scholar 

  39. Benkirane, M., Jin, D. Y., Chun, R. F., Koup, R. A. & Jeang, K. T. Mechanism of transdominant inhibition of CCR5-mediated HIV-1 infection by ccr5delta32. J. Biol. Chem. 272, 30603–30606 (1997).

    CAS  PubMed  Google Scholar 

  40. Rodriguez-Frade, J. M. et al. The chemokine monocyte chemoattractant protein-1 induces functional responses through dimerization of its receptor CCR2. Proc. Natl Acad. Sci. USA 96, 3628–3633 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Overton, M. C. & Blumer, K. J. G Protein coupled receptors function as oligomers in vivo. Curr. Biol. 10, 341–344 (2000). Using non-disruptive bioluminescence and fluorescence resonance energy transfer approaches, this paper and references 54 and 57 all demonstrated simultaneously and independently that G-protein-coupled receptors form dimers in living cells.

    CAS  PubMed  Google Scholar 

  42. Hebert, T. E. et al. A peptide derived from a β2-adrenergic receptor transmembrane domain inhibits both receptor dimerization and activation. J. Biol. Chem. 271, 16384–16392 ( 1996).Using differential epitope tagging and co-immunoprecipitation, this study provided direct biochemical evidence that wild-type G-protein-coupled receptors exist and might function as dimers.

    CAS  PubMed  Google Scholar 

  43. White, J. H. et al. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 396, 679– 682 (1998).

    CAS  PubMed  Google Scholar 

  44. Jones, K. A. et al. GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature 396, 674–679 (1998).

    CAS  PubMed  Google Scholar 

  45. Kaupmann, K. et al. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396, 683– 687 (1998).References 43 45 showed simultaneously and independently that not only could heterodimerization between GABA B R1 and GABA B R2 receptors occur, but that it is essential to the formation of a functional receptor expressed at the cell surface.

    CAS  PubMed  Google Scholar 

  46. Romano, C., Yang, W. L. & O'Malley, K. L. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J. Biol. Chem. 271, 28612– 28616 (1996).Biochemical demonstration that dimerization of the metabotropic glutamate receptor involves the formation of disulphide bridges between their large extracellular amino-terminal domains.

    CAS  PubMed  Google Scholar 

  47. Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999).A combination of co-immunoprecipitation and pharmacological analysis of coexpressed δ- and κ-opioid receptors suggested for the first time that dimerization between distinct receptor subtypes could lead to the formation of a receptor with unique pharmacological properties.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bai, M., Trivedi, S. & Brown, E. M. Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. J. Biol. Chem. 273, 23605–23610 (1998).

    CAS  PubMed  Google Scholar 

  49. Zeng, F. Y. & Wess, J. Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem. 274 , 19487–19497 (1999).

    CAS  PubMed  Google Scholar 

  50. Furthmayr, H. & Marchesi, V. T. Subunit structure of human erythrocyte glycophorin A. Biochemistry 15, 1137– 1144 (1976).

    CAS  PubMed  Google Scholar 

  51. Cvejic, S. & Devi, L. A. Dimerization of the δ-opioid receptor: implication for a role in receptor internalization. J. Biol. Chem. 272, 26959–26964 (1997).

    CAS  PubMed  Google Scholar 

  52. Ciruela, F. et al. Immunological identification of A1 adenosine receptors in brain cortex. J. Neurosci. Res. 42, 818– 828 (1995).

    CAS  PubMed  Google Scholar 

  53. Ng, G. Y. et al. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem. Biophys. Res. Commun. 227, 200– 204 (1996).

    CAS  PubMed  Google Scholar 

  54. Angers, S. et al. Detection of β2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl Acad. Sci. USA 97, 3684– 3689 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. McVey, M. et al. Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer: The human δ-opioid receptor displays constitutive oligomerization at the cell surface which is not regulated by receptor occupancy. J. Biol. Chem. (in the press).

  56. Kroeger, K. M., Hanyaloglu, A. C., Seeber, R. M., Miles, L. E. C. & Eidne, K. A. Constitutive and agonist-dependent homo-oligomerizationof the thyrotropin-releasing hormone receptor; detection in living cells using bioluminescence resonance energy transfer. J. Biol. Chem. (in the press).

  57. Rocheville, M. et al. Subtypes of the somatostatin receptor assemble as functional homo-and heterodimers. J. Biol. Chem. 275, 7862–7869 (2000).

    CAS  PubMed  Google Scholar 

  58. Roess, D. A., Horvat, R. D., Munnelly, H. & Barisas, B. G. Luteinizing hormone receptors are self-associated in the plasma membrane. Endocrinology 141, 4518–4523 (2000).

    CAS  PubMed  Google Scholar 

  59. Bond, R. A. & Bouvier, M. Receptor-based Drug Design (ed. Leff, P.) 363–377 (Marcel Dekker, New York, 1998).

    Google Scholar 

  60. Ng, G. Y. et al. Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J. Biol. Chem. 274, 7607–7610 ( 1999).

    CAS  PubMed  Google Scholar 

  61. Kuner, R. et al. Role of heteromer formation in GABAB receptor function . Science 283, 74–77 (1999).

    CAS  PubMed  Google Scholar 

  62. Couve, A. et al. Intracellular retention of recombinant GABAB receptors . J. Biol. Chem. 273, 26361– 26367 (1998).

    CAS  PubMed  Google Scholar 

  63. Margeta-Mitrovic, M., Jan, Y. N. & Jan, L. Y. A trafficking checkpoint controls GABA(B) receptor heterodimerization . Neuron 27, 97–106 (2000).Identification of an endoplasmic retention signal within the carboxyl tail of the GABA B R1 that is masked by heterodimerization with GABA B R2. In addition to highlighting the importance of dimerization for the transport of G-protein-coupled receptors, this paper also shows that GABA B receptor heterodimerization is required for function once it has reached the cell surface.

    CAS  PubMed  Google Scholar 

  64. Morello, J. P. et al. Pharmacological chaperones rescue cell-surface expression and function of misfolded V2 vasopressin receptor mutants. J. Clin. Invest. 105, 887–895 ( 2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng, H. et al. Identification of a major co-receptor for primary isolates of HIV-1. Nature 381, 661– 666 (1996).

    CAS  PubMed  Google Scholar 

  66. Samson, M. et al. Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382, 722–725 (1996).

    CAS  PubMed  Google Scholar 

  67. Liu, R. et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86, 367–377 (1996).

    CAS  PubMed  Google Scholar 

  68. Karpa, K. D., Lin, R., Kabbani, N. & Levenson, R. The dopamine D3 receptor interacts with itself and the truncated D3 splice variant d3nf: D3-D3nf interaction causes mislocalization of D3 receptors. Mol. Pharmacol. 58, 677–683 ( 2000).

    CAS  PubMed  Google Scholar 

  69. Nimchinsky, E. A., Hof, P. R., Janssen, W. G. M., Morrison, J. H. & Schmauss, C. Expression of dopamine D3 receptor dimers and tetramers in brain and in transfected cells. J. Biol. Chem. 272, 29229–29237 ( 1997).

    CAS  PubMed  Google Scholar 

  70. George, S. R. et al. A transmembrane domain-derived peptide inhibits D1 dopamine receptor function without affecting receptor oligomerization. J. Biol. Chem. 273, 30244–30248 (1998).

    CAS  PubMed  Google Scholar 

  71. Mijares, A., Lebesgue, D., Wallukat, G. & Hoebeke, J. From agonist to antagonist: Fab fragments of an agonist-like monoclonal anti-β2-adrenoceptor antibody behave as antagonists. Mol. Pharmacol. 58, 373–379 (2000).

    CAS  PubMed  Google Scholar 

  72. Conn, P. M., Rogers, D. C., Stewart, J. M., Niedel, J. & Sheffield, T. Conversion of a gonadotropin-releasing hormone antagonist to an agonist. Nature 296, 653–655 (1982).

    CAS  PubMed  Google Scholar 

  73. Hazum, E. & Keinan, D. Gonadotropin releasing hormone activation is mediated by dimerization of occupied receptors. Biochem. Biophys. Res. Commun. 133, 449–456 (1985).

    CAS  PubMed  Google Scholar 

  74. Gregory, H., Taylor, C. L. & Hopkins, C. R. Luteinizing hormone release from dissociated pituitary cells by dimerization of occupied LHRH receptors. Nature 300, 269–271 (1982).

    CAS  PubMed  Google Scholar 

  75. Carrithers, M. D. & Lerner, M. R. Synthesis and characterization of bivalent peptide ligands targeted to G-protein-coupled receptors. Chem. Biol. 3, 537– 542 (1996).

    CAS  PubMed  Google Scholar 

  76. Vila-Coro, A. J. et al. HIV-1 infection through the CCR5 receptor is blocked by receptor dimerization. Proc. Natl Acad. Sci. USA 97, 3388–3393 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zukin, R. S., Eghbali, M., Olive, D., Unterwald, E. M. & Tempel, A. Characterization and visualization of rat and guinea pig brain κ-opioid receptors: evidence for κ1 and κ2 opioid receptors. Proc. Natl Acad. Sci. USA 85, 4061–4065 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. AbdAlla, S., Lother, H. & Quitterer, U. AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407, 94–98 (2000).

    CAS  PubMed  Google Scholar 

  79. Gines, S. et al. Dopamine D1 and adenosine A1 receptors form functionally interacting heteromeric complexes. Proc. Natl Acad. Sci. USA 97 , 8606–8611 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. George, S. R. et al. Oligomerization of μ- and δ-opioid receptors. Generation of novel functional properties. J. Biol. Chem. 275, 26128–26135 (2000).

    CAS  PubMed  Google Scholar 

  81. Rocheville, M. et al. Receptors for dopamine and somatostatin: formation of hetero-oligomers with enhanced functional activity. Science 288, 154–157 (2000).

    CAS  PubMed  Google Scholar 

  82. Jordan, B. A., Trapaidze, N., Gomes, I., Nivarthi, R. & Devi, L. A. Oligomerization of opioid receptors with β2-adrenergic receptors: a role in trafficking and mitogen-activated protein kinase activation . Proc. Natl Acad. Sci. USA 98, 343– 348 (2001).

    CAS  PubMed  Google Scholar 

  83. Jordan, B. A. & Devi, L. A. G-protein-coupled receptor heterodimerization modulates receptor function. Nature 399, 697–700 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Zeng, F. Y. & Wess, J. Identification and molecular characterization of m3 muscarinic receptor dimers. J. Biol. Chem. 274 , 19487–19497 (1999).

    CAS  PubMed  Google Scholar 

  85. Cornea, A., Janovick, J. A., Maya-Nunez, G. & Conn, P. M. Gonadotropin releasing hormone microaggregation: rate monitored by fluorescence resonance energy transfer. J. Biol. Chem. (in the press).

  86. Kunishima, N. et al. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 407, 971– 977 (2000).The resolution of the three-dimensional structure of the ligand-binding domain of the metabotropic glutamate receptor revealed that it is a dimer both in the presence and absence of glutamate, indicating that G-protein-coupled receptors might be constitutive dimers.

    CAS  PubMed  Google Scholar 

  87. Tsuji, Y. et al. Cryptic dimer interface and domain organization of the extracellular region of metabotropic glutamate receptor subtype 1. J. Biol. Chem. 275, 28144–28151 ( 2000).

    CAS  PubMed  Google Scholar 

  88. Ray, K. & Hauschild, B. C. Cys-140 is critical for metabotropic glutamate receptor-1 dimerization. J. Biol. Chem. 275 , 34245–34251 (2000).

    CAS  PubMed  Google Scholar 

  89. Romano, C. et al. Covalent and noncovalent interactions mediate metabotropic glutamate receptor mGlu(5) dimerization. Mol. Pharmacol. 59, 46–53 (2001).

    CAS  PubMed  Google Scholar 

  90. Zhang, Z., Sun, S., Quinn, S. J., Brown, E. M. & Bai, M. The extracellular calcium-sensing receptor dimerizes through multiple types of intermolecular interactions. J. Biol. Chem. (2000).

  91. Lemmon, M. A. et al. Glycophorin A dimerization is driven by specific interactions between transmembrane alpha-helices. J. Biol. Chem. 267, 7683–7689 (1992).

    CAS  PubMed  Google Scholar 

  92. Lemmon, M. A. & Engelman, D. M. Specificity and promiscuity in membrane helix interactions. FEBS Lett. 346, 17–20 (1994).

    CAS  PubMed  Google Scholar 

  93. Gouldson, P. R. et al. Dimerization and domain swapping in G-protein-coupled receptors. A computational study. Neuropsychopharmacology 23, S60–S77 (2000).

    CAS  PubMed  Google Scholar 

  94. Ng, G. Y. et al. Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol. Pharmacol. 59 , 144–152 (2001). This paper describes the formation of heterodimers between GABA B R2 and different splice variants of the GABA B R1, leading to receptors with different pharmacological selectivity to the action of anticonvulsant drugs.

    CAS  PubMed  Google Scholar 

  95. Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl Acad. Sci. USA 96, 151–156 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Hovius, R., Vallotton, P., Wohland, T. & Vogel, H. Fluorescence techniques: shedding light on ligand-receptor interactions. Trends Pharmacol. Sci. 21, 266–273 (2000).

    CAS  PubMed  Google Scholar 

  97. Njuki, F. et al. A new calcitonin-receptor-like sequence in rat pulmonary blood vessels. Clin. Sci. 85, 385– 388 (1993).

    CAS  Google Scholar 

  98. Fluhmann, B., Muff, R., Hunziker, W., Fischer, J. A. & Born, W. A human orphan calcitonin receptor-like structure. Biochem. Biophys. Res. Commun. 206, 341– 347 (1995).

    CAS  PubMed  Google Scholar 

  99. McLatchie, L. M. et al. RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393, 333–339 (1998).The first demonstration that heterodimerization between a G-protein-coupled receptor (the calcitonin receptor-like receptor) and accessory proteins known as the receptor-activity-modifying proteins (RAMPs) is involved both in the cell-surface transport and the pharmacological properties of the resulting calcitonin-gene-related peptide and adrenomedullin receptors.

    CAS  PubMed  Google Scholar 

  100. Christopoulos, G. et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242 (1999).

    CAS  PubMed  Google Scholar 

  101. Dwyer, N. D., Troemel, E. R., Sengupta, P. & Bargmann, C. I. Odorant receptor localization to olfactory cilia is mediated by ODR-4, a novel membrane-associated protein. Cell 93, 455 –466 (1998).

    CAS  PubMed  Google Scholar 

  102. Liu, F. et al. Direct protein–protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature 403, 274–280 (2000). This paper reports a physical association between a seven-transmembrane-domain dopamine receptor and a channel GABA A receptor, which leads to reciprocal regulation of the two classes of receptors on co-activation.

    CAS  PubMed  Google Scholar 

  103. Bergson, C. et al. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J. Neurosci. 15, 7821–7836 ( 1995).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author is grateful to Stephane Angers, Ali Salahpour, Jean-François Mercier, Sandrine Hilairet, Lynda Adam and Momique Lagacé for the numerous discussions and their critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Related links

Related links

DATABASE LINKS

EGF

PDGF

interferon-γ

muscarinic receptors

α-adrenegic receptors

β-adrenegic receptors

gonadotropin-releasing hormone receptor

dopamine receptors

adenosine A1 receptor

glucagon receptor

α2-adrenergic receptor

M3 muscarinic receptor

angiotensin II receptor

β2-adrenergic receptor

M2 muscarinic receptor

GABAB receptor

mGluR5

δ-opioid receptor

SSTR5

CCR5

κ-opioid receptor

μ-opioid receptor

SSTR1

angiotensin I receptor

bradykinin B2 receptor

RAMP

mGluR1

FURTHER INFORMATION

Domain swapping in G-protein-coupled-receptor dimers

ENCYCLOPEDIA OF LIFE SCIENCES

G-protein-coupled receptors

Glossary

BIOGENIC AMINES

A series of molecules that can act as neurotransmitters and include noradrenaline and adrenaline.

ALLOSTERIC

A term to describe proteins that have two or more receptor sites, one of which (the active site) binds the principal substrate, whereas the other(s) bind(s) effector molecules that can influence its biological activity.

DOMINANT-NEGATIVE

A mutant protein that can form a heteromeric complex with the normal molecule, knocking out the activity of the entire complex.

SDS–PAGE

(Sodium dodecyl sulphate–polyacrylamide gel electrophoresis). A method for resolving a protein into its subunits and determining their separate molecular weights.

MOLECULAR CHAPERONE

A protein that assists in the non-covalent assembly of a protein complex but does not participate in its function.

COILED-COIL INTERACTION

A type of protein–protein interaction that involves interlacing of two helical domains.

VASOPRESSIN

Antidiuretic hormone.

FAB FRAGMENT

The antigen-binding portion of an antibody.

CALCITONIN

A polypeptide hormone, consisting of 32 amino-acid residues, that regulates calcium and phosphate levels in the blood.

HOMOTROPIC

Interaction between proteins of the same class.

ADRENOMEDULLIN

A hypotensive peptide hormone secreted by the medulla of the adrenal gland.

AMYLIN

A peptide consisting of 37 amino-acid residues that is secreted with insulin and might act to modulate its stimulatory effects on glucose metabolism in muscle. Also known as islet amyloid peptide.

VINBLASTIN

An alkaloid that arrests mitosis in metaphase by binding to spindle microtubules.

CYTOCHALASIN

Any of a group of fungal metabolites that interfere with the assembly and diassembly of actin filaments. One of the consequences of treating cells with these agents is that cleavage of the cytoplasm after nuclear division is prevented.

DYNAMIN

A protein involved in the formation of microtubule bundles and in membrane transport.

PROTOMERS

Identical subunits in an oligomeric protein complex.

GLYCOPHORIN A

A carbohydrate-rich sialoglycoprotein that is abundant in erythrocyte membranes.

ANXIOLYTIC AGENT

A drug used to reduce anxiety, such as benzodiazepines.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouvier, M. Oligomerization of G-protein-coupled transmitter receptors. Nat Rev Neurosci 2, 274–286 (2001). https://doi.org/10.1038/35067575

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/35067575

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing